Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2014 | 126 | 4a | A-130-A-133

Article title

Enhancement of the Critical Temperature Induced by the Quantum Size Effect in Superconducting Nanofilms

Authors

Content

Title variants

Languages of publication

EN

Abstracts

EN
The interplay between the quantum size effect and superconductivity in the metallic Al nanofilms has been studied with the use of the self-consistent numerical solutions of the Bogoliubov-de Gennes equations. We have shown that the critical temperature of the metallic nanofilm oscillates as a function of the nanofilm thickness. This phenomenon results from the quasi-particle energy quantization induced by the confinement of electrons in the direction perpendicular to the film. For the ultrathin nanofilms with thickness 1-2 nm we have found that the critical temperature increases up to value several times higher as compared to the one measured in the bulk.

Keywords

EN

Contributors

author
  • AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, al. A. Mickiewicza 30, 30-059 Krakow, Poland

References

  • [1] L. Janković, D. Gournis, P.N. Trikalitis, I. Arfaoui, T. Cren, P. Rudolf, M.H. Sage, T.T.M. Palstra, B. Kooi, J. De Hosson, A. Karakassides, K. Dimos, A. Moukarika, T. Bakas, Nano Lett. 6, 1131 (2006), doi: 10.1021/nl0602387
  • [2] F. Altomare, A.M. Chang, M.R. Melloch, Y. Hong, C.W. Tu, Phys. Rev. Lett. 97, 017001 (2006), doi: 10.1103/PhysRevLett.97.017001
  • [3] M. Zgirski, K.-P. Riikonen, V. Touboltsev, K. Arutyunov, Nano Lett. 5, 1029 (2005), doi: 10.1021/nl050321e
  • [4] Y. Guo, Y.-F. Zhang, X.-Y. Bao, T.-Z. Han, Z. Tang, L.-X. Zhang, W.-G. Zhu, E. G. Wang, Q. Niu, Z.Q. Qiu, J.-F. Jia, Z.-X Zhao, Q.-K. Xue, Science 306, 1915 (2004), doi: 10.1126/science.1105130
  • [5] M.M. Özer, J.R. Thompson, H.H. Weitering, Nature Phys. 2, 173 (2006), doi: 10.1038/nphys244
  • [6] M.-L. Tian, J.-G. Wang, J.S. Kurtz, Y. Liu, M.H.W. Chan, T.S. Mayer, T.E. Mallouk, Phys. Rev. B 71, 104521 (2005), doi: 10.1103/PhysRevB.71.104521
  • [7] A.A. Shanenko, M.D. Croitoru, M. Zgirski, F.M. Peeters, K. Arutyunov, Phys. Rev. B 74, 052502 (2006), doi: 10.1103/PhysRevB.74.052502
  • [8] A.A. Shanenko, M.D Croitoru, Phys. Rev. B 73, 012510 (2006), doi: 10.1103/PhysRevB.73.012510
  • [9] M.M. Özer, J.R Thompson, H.H. Weitering, Phys. Rev. B 74, 235427 (2006), doi: 10.1103/PhysRevB.74.235427
  • [10] M.M. Özer, Y. Jia, Z. Zhang, J.R. Thompson, H.H. Weitering, Science 316, 1594 (2007), doi: 10.1126/science.1142159
  • [11] T. Zhang, P. Cheng, W.J. Li, Y.J. Sun, G. Wang, X.G. Zhu, K. He, L. Wang, X. Ma, X. Chen, Y. Wang, Y. Liu, H. Q. Lin, J.F. Jia, Q.K Xue, Nature Phys. 6, 104 (2010), doi: 10.1038/nphys1499
  • [12] S. Qin, J. Kim, Q. Niu, C.K. Shih, Science 324, 1314 (2009), doi: 10.1126/science.1170775

Document Type

Publication order reference

YADDA identifier

bwmeta1.element.bwnjournal-article-appv126n4a30kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.