Journal
Article title
Title variants
Languages of publication
Abstracts
In this paper the two-dimensional extended Hubbard model with intersite magnetic Ising-like interaction in the atomic limit is analyzed by means of the classical Monte Carlo method in the grand canonical ensemble. Such an effective simple model could describe behavior of insulating (anti)ferromagnets. In the model considered the Coulomb interaction (U) is on-site and the magnetic interactions in z-direction (J>0, antiferromagnetic) are restricted to nearest-neighbors. Simulations of the model have been performed on a square lattice consisting of N=L× L=400 sites (L=20) in order to obtain the full phase diagram for U/(4J)=1. Results obtained for on-site repulsion (U>0) show that, apart from homogeneous non-ordered (NO) and ordered magnetic (antiferromagnetic, AF) phases, there is also a region of phase separation (PS: AF/NO) occurrence. We present a phase diagram as well as some thermodynamic properties of the model for the case of U/(4J)=1 (and arbitrary chemical potential and arbitrary electron concentration). The AF-NO transition can be second-order as well as first-order and the tricritical point occurs on the diagram.
Discipline
- 75.30.Fv: Spin-density waves
- 71.10.Fd: Lattice fermion models (Hubbard model, etc.)
- 75.10.-b: General theory and models of magnetic ordering(see also 05.50.+q Lattice theory and statistics)
- 71.10.Hf: Non-Fermi-liquid ground states, electron phase diagrams and phase transitions in model systems
- 64.75.Gh: Phase separation and segregation in model systems (hard spheres, Lennard-Jones, etc.)
Journal
Year
Volume
Issue
Pages
A-110-A-114
Physical description
Dates
published
2014-10
Contributors
author
- Electron States of Solids Division, Faculty of Physics, Adam Mickiewicz University in Poznań, Umultowska 85, 61-614 Poznań, Poland
author
- Electron States of Solids Division, Faculty of Physics, Adam Mickiewicz University in Poznań, Umultowska 85, 61-614 Poznań, Poland
author
- Electron States of Solids Division, Faculty of Physics, Adam Mickiewicz University in Poznań, Umultowska 85, 61-614 Poznań, Poland
author
- Electron States of Solids Division, Faculty of Physics, Adam Mickiewicz University in Poznań, Umultowska 85, 61-614 Poznań, Poland
References
- [1] J. Hubbard, Proc. R. Soc. Lond. A 276, 238 (1963), doi: 10.1098/rspa.1963.0204
- [2] F. Mancini, E. Plekhanov, G. Sica, Cent. Eur. J. Phys. 10, 609 (2012), doi: 10.2478/s11534-012-0017-z
- [3] F. Mancini, E. Plekhanov, G. Sica, Eur. Phys. J. B 86, 224 (2013), doi: 10.1140/epjb/e2013-40046-y
- [4] U. Brandt, J. Stolze, Z. Phys. B 62, 433 (1986), doi: 10.1007/BF01303574
- [5] J. Jędrzejewski, Physica A 205, 702 (1994), doi: 10.1016/0378-4371(94)90231-3
- [6] S. Robaszkiewicz, Acta Phys. Pol. A 55, 453 (1979)
- [7] S. Robaszkiewicz, Phys. Status Solidi B 70, K51 (1975), doi: 10.1002/pssb.2220700156
- [8] W. Kłobus, K. Kapcia, S. Robaszkiewicz, Acta Phys. Pol. A 118, 353 (2010) http://przyrbwn.icm.edu.pl/APP/PDF/118/a118z2p31.pdf
- [9] K. Kapcia, W. Kłobus, S. Robaszkiewicz, Acta Phys. Pol. A 121, 1032 (2012) http://przyrbwn.icm.edu.pl/APP/PDF/121/a121z5p12.pdf
- [10] S. Murawski, K. Kapcia, G. Pawłowski, S. Robaszkiewicz, Acta Phys. Pol. A 121, 1035 (2012) http://przyrbwn.icm.edu.pl/APP/PDF/121/a121z5p13.pdf
- [11] D.W. Heermann, Computer Simulation Methods in Theoretical Physics, 2nd ed., Springer-Verlag, Berlin 1990, doi: 10.1007/978-3-642-75448-7
- [12] G. Pawłowski, Eur. Phys. J. B 53, 471 (2006), doi: 10.1140/epjb/e2006-00409-1
- [13] R. Micnas, J. Ranninger, S. Robaszkiewicz, Rev. Mod. Phys. 62, 113 (1990), doi: 10.1103/RevModPhys.62.113
- [14] G.I. Japaridze, E. Müller-Hartmann, Phys. Rev. B 61, 9019 (2000), doi: 10.1103/PhysRevB.61.9019
- [15] C. Dziurzik, G.I. Japaridze, A. Schadschneider, J. Zittartz, Eur. Phys. J. B 37, 453 (2004), doi: 10.1140/epjb/e2004-00081-5
- [16] W.R. Czart, S. Robaszkiewicz, Phys. Status Solidi B 243, 151 (2006), doi: 10.1002/pssb.200562502
- [17] C. Dziurzik, G.I. Japaridze, A. Schadschneider, I. Titvinidze, J. Zittartz, Eur. Phys. J. B 51, 41 (2006), doi: 10.1140/epjb/e2006-00193-x
- [18] W.R. Czart, S. Robaszkiewicz, Acta Phys. Pol. A 109, 577 (2006) http://przyrbwn.icm.edu.pl/APP/PDF/109/a109z421.pdf
- [19] W.R. Czart, S. Robaszkiewicz, Mater. Sci.-Poland 25, 485 (2007)
- [20] K. Kapcia, Acta Phys. Pol. A 121, 733 (2012) http://przyrbwn.icm.edu.pl/APP/PDF/121/a121z4p104.pdf
- [21] S. Robaszkiewicz, G. Pawłowski, Physica C 210, 61 (1993), doi: 10.1016/0921-4534(93)90009-F
- [22] K. Kapcia, S. Robaszkiewicz, R. Micnas, J. Phys. Condens. Matter 24, 215601 (2012), doi: 10.1088/0953-8984/24/21/215601
- [23] K. Kapcia, S. Robaszkiewicz, J. Phys. Condens. Matter 25, 065603 (2013), doi: 10.1088/0953-8984/25/6/065603
- [24] K. Kapcia, J. Supercond. Nov. Magn. 26, 2647 (2013), doi: 10.1007/s10948-013-2152-1
- [25] K. Kapcia, J. Supercond. Nov. Magn. 27, 913 (2014), doi: 10.1007/s10948-013-2409-8
- [26] K.J. Kapcia, Acta Phys. Pol. A 126, A-53 (2014), doi: 10.12693/APhysPolA.126.A-53
- [27] R. Micnas, S. Robaszkiewicz, K.A. Chao, Phys. Rev. B 29, 2784 (1984), doi: 10.1103/PhysRevB.29.2784
- [28] F. Mancini, F.P. Mancini, Phys. Rev. E 77, 061120 (2008), doi: 10.1103/PhysRevE.77.061120
- [29] K. Kapcia, W. Kłobus, S. Robaszkiewicz, Acta Phys. Pol. A 118, 350 (2010) http://przyrbwn.icm.edu.pl/APP/PDF/118/a118z2p30.pdf
- [30] K. Kapcia, S. Robaszkiewicz, J. Phys. Condens. Matter 23, 105601 (2011), doi: 10.1088/0953-8984/23/10/105601
- [31] K. Kapcia, S. Robaszkiewicz, J. Phys. Condens. Matter 23, 249802 (2011), doi: 10.1088/0953-8984/23/24/249802
- [32] K. Kapcia, S. Robaszkiewicz, Acta Phys. Pol. A 121, 1029 (2012) http://przyrbwn.icm.edu.pl/APP/PDF/121/a121z5p11.pdf
- [33] F. Mancini, E. Plekhanov, G. Sica, Eur. Phys. J. B 86, 408 (2013), doi: 10.1140/epjb/e2013-40527-y
- [34] F. Mancini, E. Plekhanov, G. Sica, J. Phys. Conf. Series 391, 012148 (2012), doi: 10.1088/1742-6596/391/1/012148
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv126n4a25kz