Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2014 | 126 | 4a | A-58-A-62

Article title

Metallization of Atomic Solid Hydrogen within the Extended Hubbard Model with Renormalized Wannier Wave Functions

Authors

Content

Title variants

Languages of publication

EN

Abstracts

EN
We refer to our recent calculations Eur. Phys. J. B 86, 252 (2013) of metallization pressure of the three-dimensional simple-cubic crystal of atomic hydrogen and study the effect on the crucial results concocting from approximating the 1s Slater-type orbital function with a series of p Gaussians. As a result, we find the critical metallization pressure p_{C} = 102 GPa. The latter part is a discussion of the influence of zero-point motion on the stabilizing pressure. We show that in our model the estimate magnitude of zero-point motion carries a little effect on the critical metallization pressure at zero temperature.

Keywords

Contributors

  • Marian Smoluchowski Institute of Physics, Jagiellonian University, W.S. Reymonta 4, PL-30-059 Kraków, Poland

References

  • [1] J. Hubbard, R. Soc. (London) 276, 238 (1963)., doi: 10.1098/rspa.1963.0204 Proc
  • [2] M.C. Gutzwiller, Rev. Lett. 10, 159 (1963)., doi: 10.1103/PhysRevLett.10.159 Phys
  • [3] M.C. Gutzwiller, Rev. 137, A1726 (1965)., doi: 10.1103/PhysRev.137.A1726 Phys
  • [4] J. Kanamori, Theor. Phys. 30, 275 (1963)., doi: 10.1143/PTP.30.275 Prog
  • [5] N.F. Mott, Phys. Soc. Sec. A 62, 416 (1949)., doi: 10.1088/0370-1298/62/7/303 Proc
  • [6] N.F. Mott, Metal-Insulator Transitions, 2nd ed., Taylor and Francis, London 1990.
  • [7] F. Gebhard, The Mott Metal-Insulator Transition, Springer, Berlin 1997.
  • [8] M. Imada, A. Fujimori, Y. Tokura, Mod. Phys. 70, 1039 (1998)., doi: 10.1103/RevModPhys.70.103 Rev
  • [9] I. Bloch, Understanding Quantum Phase Transitions, Ed. L.D. Carr, CRC Press, Boca Raton 2011, Ch. 19.
  • [10] J. Kurzyk, W. Wójcik, J. Spałek, Phys. J. B 66, 385 (2008), Part I., doi: 10.1140/epjb/e2008-00433-1 Eur
  • [11] J. Spałek, J. Kurzyk, R. Podsiadły, W. Wójcik, Phys. J. B 74, 63 (2010), Part II., doi: 10.1140/epjb/e2010-00077-6 Eur
  • [12] A.P. Kądzielawa, J. Spałek, J. Kurzyk, W. Wójcik, Phys. J. B 86, 252 (2013), Part III., doi: 10.1140/epjb/e2013-40127-y Eur
  • [13] J. Hubbard, R. Soc. (London) 281, 401 (1964)., doi: 10.1098/rspa.1964.0190 Proc
  • [14] N.W. Ashcroft, Rev. Lett. 21, 1748 (1968)., doi: 10.1103/PhysRevLett.21.1748 Phys
  • [15] E. Wigner, H.B. Huntington, Chem. Phys. 3, 764 (1935)., doi: 10.1063/1.1749590 J
  • [16] A. Rycerz, Ph.D. thesis, Jagiellonian University 2003. http://th-www.if.uj.edu.pl/ztms/download/phdTheses/Adam_Rycerz_doktorat.pdf.
  • [17] J. Jędrak, J. Kaczmarczyk, J. Spałek, arXiv:1008.0021 2010.
  • [18] J. Spałek, R. Podsiadły, W.Wójcik, A. Rycerz, Rev. B 61, 15676 (2000), doi: 10.1103/PhysRevB.61.15676 Phys

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv126n4a12kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.