PL EN


Preferences help
enabled [disable] Abstract
Number of results
2014 | 126 | 4a | A-36-A-39
Article title

Temperature Dependence of the Zero-Bias Conductance in the Graphene NIS Junction

Authors
Content
Title variants
Languages of publication
EN
Abstracts
EN
The temperature dependence of the zero-bias conductance of the graphene-based, ballistic junction composed of the three consecutive regions: normal, with potential barrier ("insulating") and superconducting (NIS), is analyzed within the extended Blonder-Tinkham-Klapwijk approach. Within this approach we have found that oscillatory behavior of the conductance as a function of barrier strength is suppressed by the temperature - the amplitude diminishes with heating up the junction. Moreover, the subtle, although nontrivial feature of the system is reported: the average over the period of the oscillations of the zero-bias conductance for relatively small Fermi level mismatch behaves non-monotonically with the increase of the temperature with the maximum roughly at T/T_{c} ≈ 0.5.
Keywords
EN
Publisher

Year
Volume
126
Issue
4a
Pages
A-36-A-39
Physical description
Dates
published
2014-10
Contributors
  • Marian Smoluchowski Institute of Physics, Jagiellonian University, W.S. Reymonta 4, 30-059 Kraków, Poland
References
  • [1.] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, A.A. Firosov, Nature 438, 197 (2005), doi: 10.1038/nature04233
  • [2] G.G. Guzmán-Verri, L.C. Lew Yan Voon, Phys. Rev. B 76, 075131 (2007), doi: 10.1103/PhysRevB.76.075131
  • [3.] S. Lebègue, O. Eriksson, Phys. Rev. B 79, 115409 (2009), doi: 10.1103/PhysRevB.79.115409
  • [4] S. Cahangirov, M. Topsakal, E. Aktürk, H. Şahin, S. Ciraci, Phys. Rev. Lett. 102, 236804 (2009), doi: 10.1103/PhysRevLett.102.236804
  • [5] X.-L. Qi, S.-C. Zhang, Rev. Mod. Phys. 83, 1057 (2011), doi: 10.1103/RevModPhys.83.1057
  • [6] L. Chen, B. Feng, K. Wu, Appl. Phys. Lett. 102, 081602 (2013), doi: 10.1063/1.4793998
  • [7] C.W.J. Beenakker, Phys. Rev. Lett. 97, 067007 (2006), doi: 10.1103/PhysRevLett.97.067007
  • [8] G.E. Blonder, M. Tinkham, T.M. Klapwijk, 10.1103/PhysRevB.25.4515. Phys. Rev. B 25, 4515 (1982)
  • [9] M. Titov, C.W.J. Beenakker, Phys. Rev. B 74, 041401 (2006), doi: 10.1103/PhysRevB.74.041401
  • [10] M. Titov, A. Ossipov, C.W.J. Beenakker, Phys. Rev. B 75, 045417 (2007), doi: 10.1103/PhysRevB.75.045417
  • [11] S.-G. Cheng, Y. Xing, J. Wang, Q.-F. Sun, Phys. Rev. Lett. 103, 167003 (2009), doi: 10.1103/PhysRevLett.103.167003
  • [12] S. Bhattacharjee, K. Sengupta, Phys. Rev. Lett. 97, 217001 (2006), doi: 10.1103/PhysRevLett.97.217001
  • [13] J. Linder A. Sudbø, Phys. Rev. B 77, 064507 (2008), doi: 10.1103/PhysRevB.77.064507
  • [14] Q. Zhang, D. Fu, B. Wang, R. Zhang, D.Y. Xing, Phys. Rev. Lett. 101, 047005 (2008), doi: 10.1103/PhysRevLett.101.047005
  • [15] T. Yokoyama, J. Linder, A. Sudbø, Phys. Rev. B 77, 132503 (2008), doi: 10.1103/PhysRevB.77.132503
  • [16] M. Salehi, M. Alidoust, G. Rashedi, J. Appl. Phys. 108, 083917 (2010), doi: 10.1063/1.3494104
  • [17] M. Salehi, M. Alidoust, Y. Rahnavard, G. Rashedi, 10.1063/1.3452364. J. Appl. Phys. 107, 123916 (2010)
  • [18] M. Wysokiński, J. Spałek, J. Appl. Phys. 113, 163905 (2013), doi: 10.1063/1.4802503
  • [19] M.M. Wysokiński, Acta Phys. Pol. A 122, 758 (2012)
  • [20] P.G. de Gennes, Superconductivity in Metals and Alloys, W. A. Benjamin, New York 1966, Ch. 5
  • [21] J.B. Ketterson, S.N. Song, Superconductivity, Cambridge University Press, Cambridge 1999
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv126n4a08kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.