Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2014 | 126 | 4a | A-25-A-30

Article title

t-t'-J-U Model in Mean-Field Approximation: Coexistence of Superconductivity and Antiferromagnetism

Authors

Content

Title variants

Languages of publication

EN

Abstracts

EN
We discuss the t-J-U model in the mean-field approximation. The role of spin-exchange coupling J and the second nearest hopping t' are examined in the context of the coexistence of superconductivity and antiferromagnetism. Stability of the phases is studied with respect to temperature. The coexistence region exists for the sufficiently large Coulomb repulsion (U>U_{cr}), and in the vicinity of the half-filled band (hole doping δ < δ_{cr}). The critical hole doping is relatively small (δ_{cr} ≈ 0.006 for J/|t| = 1/3) and linear with respect to J. The decrease of U_{cr} is proportional to J, except the limit of small J (J/|t| < 0.03), where U_{cr} grows rapidly with decreasing J. The effect of the second nearest hopping is limited - the phase diagram does not change in a qualitative manner when the t' value is changed. In the limit of T → 0, SC phase is stable even for large hole-doping (such as δ = 0.5). Additional paramagnetic phase appears for large δ or small U at non-zero temperature. When temperature increases, both SC and AF+SC phase regions are reduced.

Keywords

EN

Contributors

author
  • Marian Smoluchowski Institute of Physics, Jagiellonian University, W.S. Reymonta 4, 30-059 Kraków, Poland

References

  • [1] J. Spałek, A.M. Oleś, Physica B+C 86-88, 375 (1977), doi: 10.1016/0378-4363(77)90352-7
  • [1a] K.A. Chao, J. Spałek, A.M. Oleś, J. Phys. C 10, L271 (1977), doi: 10.1088/0022-3719/10/10/002
  • [2] J. Spałek, Acta Phys. Pol. A 111, 409 (2007)
  • [3] E. Dagotto, Rev. Mod. Phys. 66, 763 (1994), doi: 10.1103/RevModPhys.66.763
  • [4] P.A. Lee, N. Nagaosa, X.-G. Wen, Rev. Mod. Phys. 78, 17 (2006), doi: 10.1103/RevModPhys.78.17
  • [5] J. Jędrak, Ph.D. thesis, Jagiellonian University, Kraków 2011 http://th-www.if.uj.edu.pl/ztms/download/phdTheses/Jakub_Jedrak_doktorat.pdf
  • [6] H.Q. Lin, Phys. Rev. B 44, 4674 (1991), doi: 10.1103/PhysRevB.44.4674
  • [7] F.C. Zhang, T.M. Rice, Phys. Rev. B 37, 3759 (1988), doi: 10.1103/PhysRevB.37.3759
  • [8] F.C. Zhang, Phys. Rev. Lett. 90, 207002 (2003), doi: 10.1103/PhysRevLett.90.207002
  • [9] J.Y. Gan, F.C. Zhang, Z.B. Su, Phys. Rev. B 71, 014508 (2005), doi: 10.1103/PhysRevB.71.014508
  • [10] J.Y. Gan, Y. Chen, Z.B. Su, F.C. Zhang, Phys. Rev. Lett. 94, 067005 (2005), doi: 10.1103/PhysRevLett.94.067005
  • [11] B.A. Bernevig, R.B. Laughlin, D.I. Santiago, Phys. Rev. Lett. 91, 147003 (2003), doi: 10.1103/PhysRevLett.91.147003
  • [12] F. Yuan, Q. Yuan, C.S. Ting, Phys. Rev. B 71, 104505 (2005), doi: 10.1103/PhysRevB.71.104505
  • [12a] H. Heiselberg, Phys. Rev. A 79, 063611 (2009), doi: 10.1103/PhysRevA.79.063611
  • [12b] K.-K. Voo, J. Phys., Condens. Matter 23, 495602 (2011), doi: 10.1088/0953-8984/23/49/495602
  • [13] M. Abram, J. Kaczmarczyk, J. Jędrak, J. Spałek, Phys. Rev. B 88, 094502 (2013), doi: 10.1103/PhysRevB.88.094502
  • [14] M.C. Gutzwiller, Phys. Rev. Lett. 10, 159 (1963), doi: 10.1103/PhysRevLett.10.159
  • [15] M.C. Gutzwiller, Phys. Rev. 137, A1726 (1965), doi: 10.1103/PhysRev.137.A1726
  • [16] T. Ogawa, K. Kanda, T. Matsubara, Prog. Theor. Phys. 53, 614 (1975), doi: 10.1143/PTP.53.614
  • [17] F.C. Zhang, C. Gros, T.M. Rice, H. Shiba, Supercond. Sci. Technol. 1, 36 (1988)
  • [18] J. Jędrak, J. Kaczmarczyk, J. Spałek, arXiv:1008.0021, 2010, unpublished
  • [19] J. Jędrak, J. Spałek, Phys. Rev. B 81, 073108 (2010), doi: 10.1103/PhysRevB.81.073108
  • [19a] J. Jędrak, J. Spałek, Phys. Rev. B 83, 104512 (2011), doi: 10.1103/PhysRevB.83.104512
  • [20] J. Kaczmarczyk, J. Spałek, Phys. Rev. B 84, 125140 (2011), doi: 10.1103/PhysRevB.84.125140
  • [21] O. Howczak, J. Spałek, J. Phys., Condens. Matter 24, 205602 (2012), doi: 10.1088/0953-8984/24/20/205602
  • [22] O. Howczak, J. Kaczmarczyk, J. Spałek, Phys. Status Solidi B 250, 609 (2013), doi: 10.1002/pssb.201200774
  • [23] M. Zegrodnik, J. Spałek, J. Bünemann, New J. Phys. 15, 073050 (2013), doi: 10.1088/1367-2630/15/7/073050
  • [24] J. Spałek, M. Zegrodnik, J. Phys. Condens. Matter 25, 435601 (2013), doi: 10.1088/0953-8984/25/43/435601
  • [25] A.P. Kądzielawa, J. Spałek, J. Kurzyk, W. Wójcik, Eur. Phys. J. B 86, 252 (2013), doi: 10.1140/epjb/e2013-40127-y
  • [26] M.M. Wysokiński, J. Spałek, J. Phys. Condens. Matter 26, 055601 (2014), doi: 10.1088/0953-8984/26/5/055601
  • [27] M. Galassi, J. Davies, J. Theiler, B. Gough, P. Jungman, G. abd Alken, M. Booth, F. Rossi, GNU Scientific Library Reference Manual, 3rd ed., Network Theory, Ltd., London 2009
  • [28] R.B. Laughlin, Philos. Mag. 86, 1165 (2006), doi: 10.1080/14786430500395678
  • [29] J. Kaczmarczyk, J. Spałek, T. Schickling, J. Bünemann, Phys. Rev. B 88, 115127 (2013), doi: 10.1103/PhysRevB.88.115127
  • [30] N. Plakida, High-Temperature Cuprate Superconductors: Experiment, Theory and Applications, Springer, New York 2010

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv126n4a05kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.