PL EN


Preferences help
enabled [disable] Abstract
Number of results
2014 | 126 | 4 | 1040-1043
Article title

What Is Unique About Mechanochemical Reactions?

Authors
Content
Title variants
Languages of publication
EN
Abstracts
EN
Mechanochemical reactions can provide compounds, phases, and microstructures that are essentially different from the products of ordinary reactions. In this paper, the origin of this uniqueness is discussed in light of the recent advances of the field. It is claimed that the local availability of large batches of energy, well above kT, is the key feature of mechanochemical reactions. As a consequence, reactions that cannot occur thermally become possible, similarly to the reactions induced by the energy of photons in photochemistry. However, the situation is more complex, as macroscopic deformation affects many defect sites simultaneously. The direction of the mechanical load relative to the orientation of a molecule or the crystallographic axes of a solid can be important. Many mechanochemical reactions of organic compounds take place at low milling energy that is not sufficient to break primary bonds, but the gentle mechanical grinding can influence the relative position of macromolecules, leading to the formation of unique cocrystals and compounds. In inorganic systems, unusual products form due to forced mixing and the high defect density generated by intense milling.
Keywords
EN
Contributors
author
  • Department of Physics, University of Maryland Baltimore County, Baltimore, MD 21250, USA
References
  • [1] S. James, T. Friščić, guest eds. Chem. Soc. Rev. 42, (2013)
  • [2] Faraday Discussion 170, Mechanochemistry: From Functional Solids to Single Molecules, Montreal 2014
  • [3] G. Kaupp, Cryst. Eng. Comm. 11, 388 (2009), doi: 10.1039/B810822F
  • [4] P. Baláž, Mechanochemistry in Nanoscience and Minerals Engineering, Springer-Verlag, Berlin Heidelberg, 2008
  • [5] B. Bhushan, C. Kajdas, in B. Bhushan, ed. Fundamentals of Tribology and Bridging the Macro- and Micro/Nanoscales, Kluwer Acad. Pub., the Netherlands 2001, p. 735
  • [6] C. Kajdas, Lubr. Sci. 6, 203 (1994), doi: 10.1002/ls.3010060302
  • [7] S. N. Zhurkov, Intern. J. Fracture Mech. 1, 311 (1965)
  • [8] L. Takacs, Acta Phys. Pol. A 121, 711 (2012)
  • [9] L. Takacs, Chem. Soc. Rev. 42, 7649 (2013), doi: 10.1039/C2CS35442J
  • [10] M. C. Lea, Am. J. Sci. 43, 527 (1892), doi: 10.2475/ajs.s3-43.258.527
  • [11] W. Spring, Bull. Soc. Chim. Fr. 39, 195 and 641 (1883)
  • [12] W. Spring, Z. anorg. Chem. 6, 176 (1894), doi: 10.1002/zaac.18940060126
  • [13] M. C. Lea, Z. anorg. Chem. 7, 50 (1894), doi: 10.1002/zaac.18940070111
  • [14] L. Takacs, J. Mater. Sci. 39, 4987 (2004)
  • [15] E.Z. da Silva, A.J.R. da Silva, A. Fazzio, Phys. Rev. Lett. 87, 256102 (2001), doi: 10.1103/PhysRevLett.87.256102
  • [16] G. Rubio-Bollinger, S.R. Bahn, N. Agraít, K.W. Jacobsen, S. Vieira, Phys. Rev. Lett. 87, 026101 (2001), doi: 10.1103/PhysRevLett.87.026101
  • [17] M. K. Beyer, J. Chem. Phys. 112, 7307 (2000), doi: 10.1063/1.481330
  • [18] M. Konôpka, R. Turanský, J. Reichert, H. Fuchs, D. Marx, I. Štich, Phys. Rev. Lett. 100, 115503 (2008), doi: 10.1103/PhysRevLett.100.115503
  • [19] J. Ribas-Arino, D. Marx, Chem. Rev. 112, 5412 (2012), doi: 10.1021/cr200399q
  • [20] A.-S. Duwez, N. Willet (eds.), Molecular Manipulation with Atomic Force Microscopy, CRC Press, Boca Raton 2012
  • [21] Z.S. Kean, A.L. Black Ramirez, S.L. Craig, Polymer Chem. 50, 3481 (2012), doi: 10.1002/pola.26148
  • [22] J. Morel, S.W.J. den Brook, abstract at the Int. Conf. Deformation Mechanisms, Rheology and Microstructures, Neustadt an der Weinstrasse, Germany 1999
  • [23] F.Kh. Urakaev, I.A. Massalimov, Mendeleev Commun. 13, 172 (2003)
  • [24] S. E. Zhu, F. Li, G. W. Wang, Chem. Soc. Rev. 42, 7535 (2013), doi: 10.1039/c3cs35494f
  • [25] C.S.B. Gomes, P.T. Gomes, M.T. Duarte, J. Organomet. Chem. 760, 101 (2014)
  • [26] A. Delori, T. Friščić, W. Jones, Cryst. Eng. Comm. 14, 2350 (2012), doi: 10.1039/C2CE06582G
  • [26a] D. Braga, L. Maini, F. Grepioni, Chem. Soc. Rev. 42, 7638 (2013), doi: 10.1039/c3cs60014a
  • [27] E. A. Losev, E. V. Boldyreva, Cryst. Eng. Comm. 16, 3857 (2014), doi: 10.1039/C3CE42321B
  • [28] K. M. Wiggins, J. N. Brantley, C. W. Bielawski, ACS Macro Lett. 1, 623 (2012), doi: 10.1021/mz300167y
  • [29] V. Štrukil, M. D. Igrc, M. Eckert-Maksić, T. Friščić, T. Chem. Eur. J. 18,8464 (2012), doi: 10.1002/chem.201200632
  • [30] K.R. Paton, E. Varrla, C. Backes, R.J. Smith, U. Khan, A. o'Neill, C. Boland, M. Lotya, O.M. Istrate, P. King, T. Higgins, S. Barwich, P. May, P. Puczkarski, I. Ahmed, M. Moebius, H. Pettersson, E. Long, J. Coelho, S.E. O'Brien, E.K. McGuire, B. Mendoza Sanchez, G.S. Duesberg, N. McEvoy, T.J. Pennycook, C. Downing, A. Crossley, V. Nicolosi, J.N. Coleman, Nature Mater. 13, 624 (2014), doi: 10.1038/nmat3944
  • [30a] J.M. Tour, Nature Mater. 13, 545 (2014), doi: 10.1038/nmat3961
  • [31] C. Suryanarayana, Mechanical Alloying and Milling, Marcel Dekker, New York 2004
  • [32] A.F. Fuentes, L. Takacs, J. Mater. Sci. 48, 598 (2012), doi: 10.1007/s10853-012-6909-x
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv126n440kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.