PL EN


Preferences help
enabled [disable] Abstract
Number of results
2014 | 126 | 4 | 994-998
Article title

Geopolymerisation of Mechanically Activated Lignite and Brown Coal Fly Ash

Content
Title variants
Languages of publication
EN
Abstracts
EN
Geopolymers have been synthesized from mechanically activated lignite and brown coal fly ash. Mechanical activation of fly ash has been carried out using laboratory ball mill. To determine the structural changes in both, the fly ash and the resulted geopolymer, Fourier transform infrared spectroscopy measurements were performed. Isothermal conduction calorimetry method was applied to study the geopolymerisation reactions in mechanically non-activated (raw) and activated fly ash samples. The isothermal conduction calorimetry results showed similar peak intensity for mechanically activated (5-30 min) fly ash samples. However, the intensity of peak for 120 min milled brown coal fly ash was the highest. The compressive strength of the specimen was found to be dependent on the grinding residence time as well as composition/type of fly ash.
Keywords
EN
Publisher

Year
Volume
126
Issue
4
Pages
994-998
Physical description
Dates
published
2014-10
Contributors
author
  • Institute of Raw Material Preparation and Environmental Processing, University of Miskolc, Hungary
author
  • Institute of Raw Material Preparation and Environmental Processing, University of Miskolc, Hungary
author
  • CSIR-National Metallurgical Laboratory, Jamshedpur, India
References
  • [1] A.G. Smekal, in: Proc. Int. Symp. on the Reactivity of Solids, Ed. J.A. Hedvall, Elanders, Gotenburg 1952
  • [2] A.Z. Juhász, L. Opoczky, Mechanical Activation of Minerals by Grinding, Akadémiai Kiadó - Ellis Horwood Ltd Publ., Budapest 1990
  • [3] P. Balaz, M. Achimovicová, Hydrometallurgy 84, 60 (2006), doi: 10.1016/j.hydromet.2006.04.006
  • [4] P. Baláz, Extractive Metallurgy of Activated Minerals, Elsevier, Amsterdam 2000, p. 278
  • [5] É. Kristóf-Makó, A.Z. Juhász, Thermochim. Acta 342, 105 (1999), doi: 10.1016/S0040-6031(99)00290-7
  • [6] K. Tkácová, Mechanical Activation of Minerals, Elsevier, Amsterdam 1989, p. 293
  • [7] G. Frigioine, S. Marra, Cement Concrete Res. 6, 113 (1976), doi: 10.1016/0008-8846(76)90056-9
  • [8] B. Osbaeck, V. Johansen, J. Am. Ceram. Soc. 72, 197 (1989), doi: 10.1111/j.1151-2916.1989.tb06101.x
  • [9] M. Senna, Izv. Sib. Otd. Akad. Nauk SSSR, Ser. Chim. Nauk 2, 3 (1985)
  • [10] S. Wakasugi, K. Sakai, S. Shimobayashi, H. Watanabe, in: Concrete under Severe Conditions, Vol. 2, Ed. O.E. Gjorv, E & FN Spon, London 1998, p. 2161
  • [11] K. Komintsas, D. Zaharaki, Miner. Eng. 20, 1261 (2007), doi: 10.1016/j.mineng.2007.07.011
  • [12] G. Mucsi, J. Lakatos, Z. Molnár, R. Szabó, in: The 9th Int. Conf. 'Environmental Engineering': Book Series: Int. Conf. on Environmental Engineering (ICEE)- Selected Papers, Vilnius, 2014, Vilnius Gediminas Technical University, 2014, Paper 39
  • [13] J. Davidovits, Geopolymer Chemistry and Application, Institut Geopolimére, Saint-Quentin (France) 2011
  • [14] D. Panias, I. P. Giannopoulou, T. Perraki: Coll. Surf. A 301, 246 (2007), doi: 10.1016/j.colsurfa.2006.12.064
  • [15] S. Kumar, R. Kumar, Ceram. Int. 37, 533 (2011), doi: 10.1016/j.ceramint.2010.09.038
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv126n430kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.