Journal
Article title
Title variants
Languages of publication
Abstracts
Electric conductivity of (Bi_{1-x}La_{x}FeO_{3})_{0.5}(PbTiO_{3})_{0.5} ceramics obtained from nanopowders synthesized by high-energy milling from respective oxides was studied in the frequency range 10 mHz ÷ 1 GHz. At room temperatures the low-frequency conductivity was found to be dominated by the contribution from poor-conducting grain boundaries, whereas the contribution in the range 1 kHz ÷ 1 MHz, due to the grain interior, was related by us to the small polaron hopping. Moreover, the electron exchange between ferric and ferrous ions activated at higher frequencies was found to be added to the conductivity above ≈ 1 MHz.
Discipline
- 75.85.+t: Magnetoelectric effects, multiferroics(for multiferroics and magnetoelectric films, see 77.55.Nv)
- 81.07.Wx: Nanopowders
- 81.20.Ev: Powder processing: powder metallurgy, compaction, sintering, mechanical alloying, and granulation
- 81.07.Bc: Nanocrystalline materials
- 81.40.Rs: Electrical and magnetic properties related to treatment conditions
Journal
Year
Volume
Issue
Pages
971-974
Physical description
Dates
published
2014-10
Contributors
author
- Institute of Molecular Physics, Polish Academy of Sciences, M. Smoluchowskiego 17, 60-179 Poznań, Poland
author
- Institute of Molecular Physics, Polish Academy of Sciences, M. Smoluchowskiego 17, 60-179 Poznań, Poland
author
- Institute of Materials Science and Engineering, Poznań University of Technology, pl. M. Skłodowskiej-Curie 5, 60-965 Poznań, Poland
author
- Institute of Materials Science and Engineering, Poznań University of Technology, pl. M. Skłodowskiej-Curie 5, 60-965 Poznań, Poland
References
- [1] G. Catalan, J.F. Scott, Adv. Mater. 21, 2463 (2009), doi: 10.1002/adma.200802849
- [2] F. Yang, M.H. Tang, Z. Ye, Y.C. Zhou, X.J. Zheng, J.X. Tang, J.J. Zhang, J. He, J. Appl. Phys. 102, 044504 (2007), doi: 10.1063/1.2768075
- [3] M. Bibes, A. Barthelemy, Nature Mater. 7, 425 (2008), doi: 10.1038/nmat3098
- [4] H. Béa, M. Gajek, M. Bibes, A. Barthélémy, J. Phys. Condens. Matter 20, 434221 (2008), doi: 10.1088/0953-8984/20/43/434221
- [5] Y.-H. Chu, L.W. Martin, M.B. Holcomb, M. Gajek, S.-J. Han, Q. He, N. Balke, C.-H. Yang, D. Lee, W. Hu, Q. Zhan, P.-L. Yang, A.F. Rodríguez, A. Scholl, S.X. Wang, R. Ramesh, Nature Mater. 7, 478 (2008), doi: 10.1038/nmat2184
- [6] P. Rovillain, R. de Sousa, Y. Gallais, A. Sacuto, M.A. Méasson, D. Colson, A. Forget, M. Bibes, A. Barthélémy, M. Cazayous, Nature Mater. 9, 975 (2010), doi: 10.1038/nmat2899
- [7] Y.N. Venevtsev, G.S. Zhdanov, S.P. Solov'ev, E.V. Bezus, V.V. Ivanova, S.A. Fedulov, A.G. Kapyshev, Sov. Phys. Crystallogr. 5, 594 (1960)
- [8] W.M. Zhu, H.Y. Guo, Z.G. Ye, Phys. Rev. B 78, 014401-1-9 (2008), doi: 10.1103/PhysRevB.78.014101
- [9] M. Połomska, W. Kaczmarek, Z. Pająk, Phys. Status Solidi A 23, 567 (1974), doi: 10.1002/pssa.2210230228
- [10] W. Kaczmarek, Z. Pająk, M. Połomska, Solid State Commun. 17, 807 (1975), doi: 10.1016/0038-1098(75)90726-7
- [11] I. Sosnowska, R. Przeniosło, P. Fischer, V.A. Murashov, J. Magn. Magn. Mater. 160, 384 (1996), doi: 10.1016/0304-8853(96)00240-5
- [12] J. Cheng, S. Yu, J. Chen, Z. Meng, L.E. Cross, Appl. Phys. Lett. 89, 122911 (2006), doi: 10.1063/1.2353806
- [13] Z.A. Li, H.X. Yang, H.F. Tian, J.Q. Lia, J. Cheng, J. Chen, Appl. Phys. Lett. 90, 182904 (2007), doi: 10.1063/1.2735553
- [14] A. Singh, A. Gupta, R. Chatterjee, Appl. Phys. Lett. 93, 022902 (2008), doi: 10.1063/1.2963971
- [15] T. Leist, T. Granzow, W. Jo, J. Rödel, J. Appl. Phys. 108, 014103 (2010), doi: 10.1063/1.3445771
- [16] K.K. Mishra, V. Sivasubramanian, R.M. Sarguna, T.R. Ravindran, A.K. Arora, J. Solid State Chem. 184, 2381 (2011), doi: 10.1016/j.jssc.2011.07.014
- [17] K.K. Mishra, A.T. Satya, A. Bharathi, V. Sivasubramanian, V.R.K. Murthy, A.K. Arora, J. Appl. Phys. 110, 123529 (2011), doi: 10.1063/1.3673240
- [18] K.K. Mishra, R.M. Sarguna, S. Khan, A.K. Arora, AIP Adv. 1, 032126 (2011), doi: 10.1063/1.3673240
- [19] A. Singh, R. Chatterjee, S.K. Mishra, P.S.R. Krishna, S.L. Chaplot, J. Appl. Phys. 111, 014113 (2012), doi: 10.1063/1.3675279
- [20] L.B. Kong, T.S. Zhang, J. Ma, F. Boey, Prog. Mater. Sci. 53, 207 (2008), doi: 10.1016/j.pmatsci.2007.05.001
- [21] I. Szafraniak-Wiza, W. Bednarski, S. Waplak, B. Hilczer, A. Pietraszko, L. Kępiński, J. Nanosci. Nanotechnol. 9, 3246 (2009), doi: 10.1166/jnn.2009.227
- [22] E. Markiewicz, B. Hilczer, M. Błaszyk, A. Pietraszko, E. Talik, J. Electroceram. 27, 154 (2011), doi: 10.1007/s10832-011-9660-9
- [23] M. Połomska, B. Hilczer, J. Wolak, A. Pietraszko, M. Balcerzak, M. Jurczyk, J. Jakubowicz, Phase Transit., published online 2014, doi: 10.1080/01411594.2014.953519
- [24] E. Markiewicz, B. Andrzejewski, B. Hilczer, M. Balcerzak, A. Pietraszko, M. Jurczyk, J. Electroceram., submitted for publication
- [25] J.C. Maxwell, Electric and Magnetism, Vol. 2, Oxford University Press, New York 1973, p. 828
- [26] K.W. Wagner, Ann. Phys. 40, 817 (1913)
- [27] C.G. Koops, Phys. Rev. 83, 121 (1951), doi: 10.1103/PhysRev.83.121
- [28] M. Maglione, arXiv: 1006.3719
- [29] M. Idrees, M. Nadeem, M. Atif, M. Siddique, M. Mehmood, M.M. Hassan, Acta Mater. 59, 1338 (2011), doi: 10.1016/j.actamat.2010.10.066
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv126n425kz