PL EN


Preferences help
enabled [disable] Abstract
Number of results
2014 | 126 | 4 | 971-974
Article title

Electric Conductivity of (Bi_{1-x}La_{x}FeO_{3})_{0.5}(PbTiO_{3})_{0.5} Ceramics Obtained from Mechanosynthesized Nanopowders

Content
Title variants
Languages of publication
EN
Abstracts
EN
Electric conductivity of (Bi_{1-x}La_{x}FeO_{3})_{0.5}(PbTiO_{3})_{0.5} ceramics obtained from nanopowders synthesized by high-energy milling from respective oxides was studied in the frequency range 10 mHz ÷ 1 GHz. At room temperatures the low-frequency conductivity was found to be dominated by the contribution from poor-conducting grain boundaries, whereas the contribution in the range 1 kHz ÷ 1 MHz, due to the grain interior, was related by us to the small polaron hopping. Moreover, the electron exchange between ferric and ferrous ions activated at higher frequencies was found to be added to the conductivity above ≈ 1 MHz.
Keywords
Contributors
author
  • Institute of Molecular Physics, Polish Academy of Sciences, M. Smoluchowskiego 17, 60-179 Poznań, Poland
author
  • Institute of Molecular Physics, Polish Academy of Sciences, M. Smoluchowskiego 17, 60-179 Poznań, Poland
author
  • Institute of Materials Science and Engineering, Poznań University of Technology, pl. M. Skłodowskiej-Curie 5, 60-965 Poznań, Poland
author
  • Institute of Materials Science and Engineering, Poznań University of Technology, pl. M. Skłodowskiej-Curie 5, 60-965 Poznań, Poland
References
  • [1] G. Catalan, J.F. Scott, Adv. Mater. 21, 2463 (2009), doi: 10.1002/adma.200802849
  • [2] F. Yang, M.H. Tang, Z. Ye, Y.C. Zhou, X.J. Zheng, J.X. Tang, J.J. Zhang, J. He, J. Appl. Phys. 102, 044504 (2007), doi: 10.1063/1.2768075
  • [3] M. Bibes, A. Barthelemy, Nature Mater. 7, 425 (2008), doi: 10.1038/nmat3098
  • [4] H. Béa, M. Gajek, M. Bibes, A. Barthélémy, J. Phys. Condens. Matter 20, 434221 (2008), doi: 10.1088/0953-8984/20/43/434221
  • [5] Y.-H. Chu, L.W. Martin, M.B. Holcomb, M. Gajek, S.-J. Han, Q. He, N. Balke, C.-H. Yang, D. Lee, W. Hu, Q. Zhan, P.-L. Yang, A.F. Rodríguez, A. Scholl, S.X. Wang, R. Ramesh, Nature Mater. 7, 478 (2008), doi: 10.1038/nmat2184
  • [6] P. Rovillain, R. de Sousa, Y. Gallais, A. Sacuto, M.A. Méasson, D. Colson, A. Forget, M. Bibes, A. Barthélémy, M. Cazayous, Nature Mater. 9, 975 (2010), doi: 10.1038/nmat2899
  • [7] Y.N. Venevtsev, G.S. Zhdanov, S.P. Solov'ev, E.V. Bezus, V.V. Ivanova, S.A. Fedulov, A.G. Kapyshev, Sov. Phys. Crystallogr. 5, 594 (1960)
  • [8] W.M. Zhu, H.Y. Guo, Z.G. Ye, Phys. Rev. B 78, 014401-1-9 (2008), doi: 10.1103/PhysRevB.78.014101
  • [9] M. Połomska, W. Kaczmarek, Z. Pająk, Phys. Status Solidi A 23, 567 (1974), doi: 10.1002/pssa.2210230228
  • [10] W. Kaczmarek, Z. Pająk, M. Połomska, Solid State Commun. 17, 807 (1975), doi: 10.1016/0038-1098(75)90726-7
  • [11] I. Sosnowska, R. Przeniosło, P. Fischer, V.A. Murashov, J. Magn. Magn. Mater. 160, 384 (1996), doi: 10.1016/0304-8853(96)00240-5
  • [12] J. Cheng, S. Yu, J. Chen, Z. Meng, L.E. Cross, Appl. Phys. Lett. 89, 122911 (2006), doi: 10.1063/1.2353806
  • [13] Z.A. Li, H.X. Yang, H.F. Tian, J.Q. Lia, J. Cheng, J. Chen, Appl. Phys. Lett. 90, 182904 (2007), doi: 10.1063/1.2735553
  • [14] A. Singh, A. Gupta, R. Chatterjee, Appl. Phys. Lett. 93, 022902 (2008), doi: 10.1063/1.2963971
  • [15] T. Leist, T. Granzow, W. Jo, J. Rödel, J. Appl. Phys. 108, 014103 (2010), doi: 10.1063/1.3445771
  • [16] K.K. Mishra, V. Sivasubramanian, R.M. Sarguna, T.R. Ravindran, A.K. Arora, J. Solid State Chem. 184, 2381 (2011), doi: 10.1016/j.jssc.2011.07.014
  • [17] K.K. Mishra, A.T. Satya, A. Bharathi, V. Sivasubramanian, V.R.K. Murthy, A.K. Arora, J. Appl. Phys. 110, 123529 (2011), doi: 10.1063/1.3673240
  • [18] K.K. Mishra, R.M. Sarguna, S. Khan, A.K. Arora, AIP Adv. 1, 032126 (2011), doi: 10.1063/1.3673240
  • [19] A. Singh, R. Chatterjee, S.K. Mishra, P.S.R. Krishna, S.L. Chaplot, J. Appl. Phys. 111, 014113 (2012), doi: 10.1063/1.3675279
  • [20] L.B. Kong, T.S. Zhang, J. Ma, F. Boey, Prog. Mater. Sci. 53, 207 (2008), doi: 10.1016/j.pmatsci.2007.05.001
  • [21] I. Szafraniak-Wiza, W. Bednarski, S. Waplak, B. Hilczer, A. Pietraszko, L. Kępiński, J. Nanosci. Nanotechnol. 9, 3246 (2009), doi: 10.1166/jnn.2009.227
  • [22] E. Markiewicz, B. Hilczer, M. Błaszyk, A. Pietraszko, E. Talik, J. Electroceram. 27, 154 (2011), doi: 10.1007/s10832-011-9660-9
  • [23] M. Połomska, B. Hilczer, J. Wolak, A. Pietraszko, M. Balcerzak, M. Jurczyk, J. Jakubowicz, Phase Transit., published online 2014, doi: 10.1080/01411594.2014.953519
  • [24] E. Markiewicz, B. Andrzejewski, B. Hilczer, M. Balcerzak, A. Pietraszko, M. Jurczyk, J. Electroceram., submitted for publication
  • [25] J.C. Maxwell, Electric and Magnetism, Vol. 2, Oxford University Press, New York 1973, p. 828
  • [26] K.W. Wagner, Ann. Phys. 40, 817 (1913)
  • [27] C.G. Koops, Phys. Rev. 83, 121 (1951), doi: 10.1103/PhysRev.83.121
  • [28] M. Maglione, arXiv: 1006.3719
  • [29] M. Idrees, M. Nadeem, M. Atif, M. Siddique, M. Mehmood, M.M. Hassan, Acta Mater. 59, 1338 (2011), doi: 10.1016/j.actamat.2010.10.066
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv126n425kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.