Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2014 | 126 | 4 | 943-946

Article title

Mechanochemically Synthesized Nanocrystalline Sb_2S_3 Particles

Content

Title variants

Languages of publication

EN

Abstracts

EN
Nanocrystalline Sb_2S_3 particles have been synthesized from Sb and S powders by high-energy milling in a planetary mill using argon protective atmosphere. X-ray diffraction, particle size analysis, scanning electron microscopy, energy dispersive X-ray spectroscopy, transmission electron microscopy, electron diffraction, high resolution transmission electron microscopy, UV-VIS, and differential scanning calorimetry methods for characterization of the prepared particles were applied. The powder X-ray diffraction pattern shows that Sb_2S_3 nanocrystals belong to the orthorhombic phase with calculated crystallite size of about 36 nm. The nanocrystalline Sb_2S_3 particles are constituted by randomly distributed crystalline nanodomains (20 nm) and then these particles are forming aggregates. The monomodal distribution of Sb_2S_3 particles with the average hydrodynamic parameter 210 nm was obtained. The quantification of energy dispersive X-ray spectroscopy analysis peaks give an atomic ratio of 2:3 for Sb:S. The optical band gap determined from the absorption spectrum is 4.9 eV, indicating a considerable blue shift relative to the bulk Sb_2S_3. Differential scanning calorimetry curves exhibit a broad exothermic peak between 200 and 300°C, suggesting recovery processes. This interpretation is supported by X-ray diffraction measurements that indicate a 23-fold increase of the crystallite size to about 827 nm as a consequence of application of high temperature process. The controlled mechanochemical synthesis of Sb_2S_3 nanoparticles at ambient temperature and atmospheric pressure remains a great challenge.

Keywords

EN

Contributors

author
  • Institute of Geotechnics, Slovak Academy of Sciences, Watsonova 45, 04001 Košice, Slovakia
author
  • Institute of Material Sciences of Seville (CSIC-US)" country="Spain
author
  • Institute of Material Sciences of Seville (CSIC-US)" country="Spain
author
  • Institute of Geotechnics, Slovak Academy of Sciences, Watsonova 45, 04001 Košice, Slovakia
author
  • Institute of Geotechnics, Slovak Academy of Sciences, Watsonova 45, 04001 Košice, Slovakia
author
  • Institute of Electronics and Photonics, Slovak University of Technology, Bratislava, Slovakia
author
  • Institute of Electronics and Photonics, Slovak University of Technology, Bratislava, Slovakia
author
  • Institute of Geotechnics, Slovak Academy of Sciences, Watsonova 45, 04001 Košice, Slovakia

References

  • [1] J. Li, M. Moskovits, T.L. Haslett, Chem. Mater. 10, 1963 (1998), doi: 10.1021/cm980122e
  • [2] L.M. Ang, T.S.A. Hor, G.Q. Xu, C.H. Tung, S. Zhao, J.L.S. Wang, Chem. Mater. 11, 2115 (1999), doi: 10.1021/cm990078i
  • [3] W. Quing-Sheng, Z. Guo-Xin, D. Ya-Ping, J. Nanopart. Res. 8, 737 (2006), doi: 10.1007/s11051-005-4965-8
  • [4] M.Y. Versavel, J.A. Haber, Thin Solid Films 515, 7171 (2007), doi: 10.1016/j.tsf.2007.03.043
  • [5] Q. Han, L. Chen, W. Zhu, M. Wang, X. Wang, X. Yang, L. Lu, Mater. Lett. 63, 1030 (2009), doi: 10.1016/j.matlet.2009.01.078
  • [6] K.-Q. Li, F.-Q. Huang, X.-P. Lin, Scr. Mater. 58, 834 (2008), doi: 10.1016/j.scriptamat.2007.12.033
  • [7] Y. Xu, Z. Ren, G. Cao, W. Ren, K. Deng, Y. Zhong, Cryst. Res. Technol. 44, 851 (2009), doi: 10.1002/crat.200900205
  • [8] P. Baláž, Mechanochemistry in Nanoscience and Minerals Engineering, Springer, Berlin 2008, doi: 10.1007/978-3-540-74855-7
  • [9] E. Godočíková, P. Baláž, E. Gock, W.S. Choi, B.S. Kim, Powder Technol. 164, 147 (2006), doi: 10.1016/j.powtec.2006.03.021
  • [10] E. Godočíková, P. Baláž, J.M. Criado, C. Real, E. Gock, Thermochim. Acta 440, 19 (2006), doi: 10.1016/j.tca.2005.09.015
  • [11] E. Dutková, P. Baláž, P. Pourghahramani, A.V. Nguyen, V. Šepelák, V. Feldhoff, J. Kováč, A. Šatka, Solid State Ionics 179, 1242 (2008), doi: 10.1016/j.ssi.2008.03.020
  • [12] P. Baláž, P. Pourghahramani, E. Dutková, M. Fabián, J. Kováč, A. Šatka, Cent. Europ. J. Chem. 7, 215 (2009), doi: 10.2478/s11532-009-0005-3
  • [13] E. Dutková, P. Baláž, P. Pourghahramani, S. Velumani, J.A. Ascencio, N.G. Kostova, J. Nanosci. Nanotechnol. 9, 6600 (2009), doi: 10.1166/jnn.2009.1361
  • [14] P. Baláž, M. Achimovičová, M. Baláž, P. Billik, Z. Cherkezova-Zheleva, J. Criado, F. Delogu, E. Dutková, E. Gaffet, F.J. Gotor, R. Kumar, I. Mitov, T. Rojac, M. Senna, A. Streletskii, K. Wieczorek-Ciurowa, Chem. Soc. Rev. 42, 7571 (2013), doi: 10.1039/c3cs35468g
  • [15] E. Dutková, L. Takacs, M.J. Sayagues, P. Baláž, J. Kováč, A. Šatka, Chem. Eng. Sci. 85, 25 (2013), doi: 10.1016/j.ces.2012.02.028
  • [16] O. Kubaschewski, L.L. Evans, Metallurgical Thermochemistry, Pergamon Press, London 1955
  • [17] E. Dutková, M.J. Sayagues, C. Real, P. Baláž, J. Kováč, A. Šatka, Mater. Sci. Semicond. Proc. 27, 267 (2014), doi: 10.1016/j.mssp.2014.05.057
  • [18] W. Qing Sheng, Z. Guo-Xin, D. Ya-Ping, J. Nanopart. Res. 8, 737 (2006), doi: 10.1007/s11051-005-4965-8

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv126n417kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.