PL EN


Preferences help
enabled [disable] Abstract
Number of results
2014 | 126 | 4 | 871-874
Article title

Mechanical Alloying of Ti-20Ta-20Nb-(10÷20)Mg Alloys

Authors
Content
Title variants
Languages of publication
EN
Abstracts
EN
In this paper preparation of new β-Ti alloys using mechanical alloying process has been shown. β -Ti alloys are the best metallic biomaterials because of their excellent properties: biocompatibility, low Young moduli and corrosion resistance. Ti-20Ta-20Nb biocompatible alloy was investigated. Mg was used as alloying element, as well (10, 15 and 20 wt%). Pure Ti, Nb, Ta and Mg powders were alloyed under argon atmosphere in shaker type mill (Spex 8000). There was no problem with cold welding in the mechanical alloying of titanium alloys containing Mg. In the paper a possibility of porous materials preparation by sintering in temperature higher than boiling temperature of Mg has been shown. This thermal dealloying method could be an alternative to space holder technique.
Keywords
EN
Publisher

Year
Volume
126
Issue
4
Pages
871-874
Physical description
Dates
published
2014-10
Contributors
author
  • Poznań University of Technology, Institute of Materials Science and Engineering, pl. M. Skłodowskiej-Curie 5, 60-965 Poznań, Poland
References
  • [1] R.V. Noort, J. Mater. Sci. 22, 3801 (1987), doi: 10.1007/BF01133326
  • [2] J.A. Davidson, A.K. Mishra, P. Kovacs, R.A. Poggie, Biomed. Mater. Eng. 4, 231 (1994)
  • [3] S.J. Lugowski, D.C. Smith, A.D. McHugh, V. Loon, J. Biomed. Mater. Res. 25, 1443 (1991), doi: 10.1002/jbm.820251204
  • [4] Y. Okazaki, S. Rao, Y. Ito, T. Tateishi, Biomaterials 19, 1197 (1998), doi: 10.1016/S0142-9612(97)00235-4
  • [5] M. Niinomi, T. Hattori, K. Morikawa, T. Kasuga, A. Suzuki, H. Fukui, S. Niwa, Mater. Trans. 43, 2970 (2002), doi: 10.2320/matertrans.43.2970
  • [6] M. Niinomi, M. Nakai, J. Hieda, Acta Biomater. 8, 3888 (2012), doi: 10.1088/1748-6041/2/3/S15
  • [7] B. Denkena, A. Lucas, Ann. CIRP 56, 113 (2007), doi: 10.1016/j.cirp.2007.05.029
  • [8] M.P. Staiger, A.M. Pietak, J. Huadmai, G. Dias, Biomaterials 27, 1728 (2006), doi: 10.1016/j.biomaterials.2005.10.003
  • [9] E. Zhou, C. Suryanarayana, F.H. Froes, Mater. Lett. 23, 27 (1995), doi: 0167-577x/95/09.50
  • [10] D.M.J. Wilke, P.S. Goodwin, C.M. Ward-Close, K. Bagnall, J. Steeds, Mater. Lett. 27, 47 (1996), doi: 10.1016/0167-577X(95)00265-0
  • [11] T. Aydogmus, S. Bor, Metall. Mater. Trans. A 43A, 5173 (2012), doi: 10.1007/s11661-012-1350-y
  • [12] F. Sun, F.H. Froes, J. Alloys Comp. 340, 220 (2002), doi: 10.1016/S0925-8388(01)02027-8
  • [13] J.G. Zheng, P.G. Partridge, J.W. Steeds, J. Mater. Sci. 32, 3099 (1997), doi: 0022-2461
  • [14] C. Suryanarayana, F.H. Froes, J. Mater. Res. 5, 1880 (1990), doi: 10.1557/JMR.1990.1880
  • [15] O.N. Senkov, M. Cavusoglu, F.H. Froes, J. Alloys Comp. 297, (2000), doi: 10.1016/S0925-8388(99)00558-7
  • [16] P. Scardi, M. Leoni, R. Delhez, J. Appl. Crystallogr. 37, 381 (2004), doi: 10.1107/S0021889804004583
  • [17] D. Oleszak, A. Olszyna, Composites 4, 11 (2004)
  • [18] G. Adamek, J. Jakubowicz, Mater. Chem. Phys. 124, 1198 (2010), doi: 10.1016/j.matchemphys.2010.08.057
  • [19] M. Zadra, Mater. Sci. Eng. A 01, 583 (2013), doi: 10.1016/j.msea.2013.06.064
  • [20] C.E. Wen, M. Mabuchi, Y. Yamada, K. Shimojima, Y. Chino, T. Asahina, Scr. Mater. 45, 1147 (2001), doi: 10.1016/S1359-6462(01)01132-0
  • [21] I.-H. Oh, N. Nomura, S. Hanada, Mater. Trans. 43, 443 (2002), doi: 10.2320/matertrans.43.443
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv126n402kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.