Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2014 | 126 | 3 | 833-840

Article title

Structural and Spectral Properties of 1,2-dihydroxy-9,10-anthraquinone Dye Sensitizer for Solar Cell Applications

Content

Title variants

Languages of publication

EN

Abstracts

EN
The geometries, electronic structures, polarizabilities, and hyperpolarizabilities of natural dye sensitizer alizarin from madder fruit was studied based on density functional theory using the hybrid functional B3LYP. Features of the electronic absorption spectra in the visible and near-UV regions were assigned based on time-dependent density function theory calculations. The calculated results suggest three excited states with the lowest excited energies in 1,2-dihydroxy-9,10-anthraquinone and it was due to photoinduced electron transfer processes. The interfacial electron transfer between semiconductor TiO_2 electrode and dye sensitizer 1,2-dihydroxy-9,10-anthraquinone is due to an electron injection process from excited dye to the semiconductor conduction band. The importance of hydroxyl group in geometries, electronic structures and spectral properties were reported.

Keywords

Contributors

author
  • Velalar College of Engineering and Technology, Thindal, Erode-638012, Tamilnadu, India
author
  • Mahendra Educational Institutions, Mallasamudram-637503, Tamil Nadu, India
author
  • Mahendra Educational Institutions, Mallasamudram-637503, Tamil Nadu, India
  • Department of Energy and Drive Systems, University of Applied Sciences, Ulm, Germany
author
  • Department of Physics, Periyar University, Salem-636011, Tamil Nadu, India
author
  • Selvam College of Technology, Namakkal-637003, Tamil Nadu, India

References

  • [1] H.P. Dai, K. Shiu, Electrochim. Acta 43, 2709 (1998), doi: 10.1016/S0013-4686(97)10185-2
  • [2] T. Grygar, Š. Kučková, D. Hradil, J. Hradilová, J. Solid State Electrochem. 7, 706 (2003), doi: 10.1007/s10008-003-0380-1
  • [3] B. O'Regan, M. Gratzel, Nature 353, 737 (1991), doi: 10.1038/353737a0
  • [4] M. Gratzel, Nature 414, 338 (2001), doi: 10.1038/35104607
  • [5] N.G. Park, K. Kim, Phys. Status Solidi A 205, 1895 (2008), doi: 10.1039/b917065k
  • [6] Y. Chiba, A. Islam, Y. Watanabe, R. Komiya, N. Koide, L. Han, Jpn. J. Appl. Phys. 45, L638 (2006), doi: 10.1143/JJAP.45L638
  • [7] C.R. Zhang, H.S. Chen, G.H. Wang, Chem. Res. Chin. U 20, 640 (2004), doi: 10.1016/j.cplett.2003.09.115
  • [8] Y. Sun, X. Chen, L. Sun, X. Guo, W. Lu, Chem. Phys. Lett. 381, 397 (2003), doi: 10.1016/j.cplett.2003.09.115
  • [9] O. Christiansen, J. Gauss, J.F. Stanton, Chem. Phys. Lett. 305, 147 (1999), doi: 10.1016/S0009-2614(99)00358-9
  • [10] P.M. Anbarasan, P. Senthil Kumar, K. Vasudevan, S. Moorthy Babu, V. Aroulmoji, Acta Phys. Pol. A 119, 395 (2011) http://przyrbwn.icm.edu.pl/APP/PDF/119/a119z3p20.pdf
  • [11] D. Jacquemin, J. Preat, M. Charlot, V. Wathelet, J.M. Andre, E.A. Perpète, J. Chem. Phys. 121, 1736 (2004), doi: 10.1186/2193-1801-3-233
  • [12] E.A. Perpète, V. Wathelet, J. Preat, C. Lambert, D. Jacquemin, J. Chem. Theor. Comput. 2, 434 (2006), doi: 10.1021/ct050287w
  • [13] D. Jacquemin, V. Wathelet, J. Preat, E.A. Perpète, Spectrochim. Acta A 67A, 334 (2007), doi: 10.1016/j.saa.2006.07.023
  • [14] D. Jacquemin, X. Assfeld, J. Preat, E.A. Perpète, Mol. Phys. 105, 325 (2007), doi: 10.1080/00268970601140974
  • [15] D. Jacquemin, E.A. Perpète, I. Ciofini, C. Adamo, Acc. Chem. Res. 42, 326 (2009), doi: 10.1021/ar800163d
  • [15a] J. Fabian, Dyes Pigm. 84, 36 (2010), doi: 10.1016/j.dyepig.2009.06.008
  • [16] R. Chencier, Madder Red: A History of Luxury and Trade, Curzon Press, Richmond 2000
  • [17] D. Jacquemin, E. Brémond, A. Planchat, I. Ciofini, C. Adamo, Chem. Theory Comput. 7, 1882 (2011), doi: 10.1021/ct200259k
  • [18] N. Belghiti, M. Bennani, M. Hamidi, S.M. Bouzzine, M. Bouachrine, Afr. J. Pure Appl. Chem. 6, 164 (2012), doi: 10.5897/AJPAC12.021
  • [19] L. Shen, H.-F. Ji, H.-Y. Zhang, J. Mol. Struct. THEOCHEM 851, 220 (2008), doi: 10.1016/j.theochem.2007.11.009
  • [20] T. Joseph, C.H.T. Varghese, Y. Panicker, T. Thiemann, K. Viswanathan, C. Van Alsenoy, T.K. Manojkumar, Spectrochim. Acta Part A, Mol. Biomol. Spectrosc. 117, 413 (2014), doi: 10.1016/j.saa.2013.08.016
  • [21] D. Jacquemin, J. Preat, M. Charlot, V. Wathelet, J.-M. André, E.A. Perpète, J. Chem. Phys. 121, 1736 (2004), doi: 10.1063/1.1764497
  • [22] D. Guillaumont, S. Nakamura, Dyes Pigm. 46, 85 (2000), doi: 10.1016/S0143-7208(00)00030-9
  • [23] P.L. Polavarapu, J. Phys. Chem. 94, 8106 (1990), doi: 10.1021/j100384a024
  • [24] G. Keresztury, S. Holly, J. Varga, G. Besenyei, A.Y. Wang, J.R. Durig, Spectrochim. Acta A 49, 1993 (2007), doi: 10.1016/S0584-8539(09)91012-1
  • [25] P. Nallasamy, P.M. Anbarasan, S. Mohan, Turk. J. Chem. 26, 105 (2002)
  • [26] Handbook of Vibrational Spectroscopy, Eds. J.M. Chalmers, P.R. Griffiths, Vol. 1, Wiley, Chichester 2001, p. 71
  • [27] J. Karpagam, N. Sundaraganesan, S. Sebastian, S. Manoharan, M.Z. Kurt, J. Raman Spectrosc. 41, 53 (2010), doi: 10.1002/jrs.2408
  • [28] D.F. Waston, G.J. Meyer, Ann. Rev. Phys. Chem. 56, 119 (2005), doi: 10.1146/annurev.physchem.56.092503.141142
  • [29] R. Sánchez-de-Armas, M.A. San-Miguel, J. Oviedo, J. Fdez. Sanz, Comput. Theor. Chem. 975, 99 (2011), doi: 10.1016/j.comptc.2011.01.010
  • [30] W.R. Duncan, O.V. Prezhdo, J. Phys. Chem. B 109, 365 (2005), doi: 10.1021/jp046342z
  • [31] D.A. Kleinman, Phys. Rev. 126, 1977 (1962), doi: 10.1103/PhysRev.126.1977
  • [32] S. Arulmozhi, M. Victor Antony Raj, J. Madhavan, Der Chemica Sinica 2, 158 (2011) http://pelagiaresearchlibrary.com/der-chemica-sinica/vol2-iss6/DCS-2011-2-6-158-163.pdf

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv126n336kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.