PL EN


Preferences help
enabled [disable] Abstract
Number of results
2014 | 126 | 3 | 833-840
Article title

Structural and Spectral Properties of 1,2-dihydroxy-9,10-anthraquinone Dye Sensitizer for Solar Cell Applications

Content
Title variants
Languages of publication
EN
Abstracts
EN
The geometries, electronic structures, polarizabilities, and hyperpolarizabilities of natural dye sensitizer alizarin from madder fruit was studied based on density functional theory using the hybrid functional B3LYP. Features of the electronic absorption spectra in the visible and near-UV regions were assigned based on time-dependent density function theory calculations. The calculated results suggest three excited states with the lowest excited energies in 1,2-dihydroxy-9,10-anthraquinone and it was due to photoinduced electron transfer processes. The interfacial electron transfer between semiconductor TiO_2 electrode and dye sensitizer 1,2-dihydroxy-9,10-anthraquinone is due to an electron injection process from excited dye to the semiconductor conduction band. The importance of hydroxyl group in geometries, electronic structures and spectral properties were reported.
Keywords
Publisher

Year
Volume
126
Issue
3
Pages
833-840
Physical description
Dates
published
2014-08
received
2013-11-05
(unknown)
2014-03-05
(unknown)
2014-03-10
Contributors
author
  • Velalar College of Engineering and Technology, Thindal, Erode-638012, Tamilnadu, India
author
  • Mahendra Educational Institutions, Mallasamudram-637503, Tamil Nadu, India
author
  • Mahendra Educational Institutions, Mallasamudram-637503, Tamil Nadu, India
  • Department of Energy and Drive Systems, University of Applied Sciences, Ulm, Germany
author
  • Department of Physics, Periyar University, Salem-636011, Tamil Nadu, India
author
  • Selvam College of Technology, Namakkal-637003, Tamil Nadu, India
References
  • [1] H.P. Dai, K. Shiu, Electrochim. Acta 43, 2709 (1998), doi: 10.1016/S0013-4686(97)10185-2
  • [2] T. Grygar, Š. Kučková, D. Hradil, J. Hradilová, J. Solid State Electrochem. 7, 706 (2003), doi: 10.1007/s10008-003-0380-1
  • [3] B. O'Regan, M. Gratzel, Nature 353, 737 (1991), doi: 10.1038/353737a0
  • [4] M. Gratzel, Nature 414, 338 (2001), doi: 10.1038/35104607
  • [5] N.G. Park, K. Kim, Phys. Status Solidi A 205, 1895 (2008), doi: 10.1039/b917065k
  • [6] Y. Chiba, A. Islam, Y. Watanabe, R. Komiya, N. Koide, L. Han, Jpn. J. Appl. Phys. 45, L638 (2006), doi: 10.1143/JJAP.45L638
  • [7] C.R. Zhang, H.S. Chen, G.H. Wang, Chem. Res. Chin. U 20, 640 (2004), doi: 10.1016/j.cplett.2003.09.115
  • [8] Y. Sun, X. Chen, L. Sun, X. Guo, W. Lu, Chem. Phys. Lett. 381, 397 (2003), doi: 10.1016/j.cplett.2003.09.115
  • [9] O. Christiansen, J. Gauss, J.F. Stanton, Chem. Phys. Lett. 305, 147 (1999), doi: 10.1016/S0009-2614(99)00358-9
  • [10] P.M. Anbarasan, P. Senthil Kumar, K. Vasudevan, S. Moorthy Babu, V. Aroulmoji, Acta Phys. Pol. A 119, 395 (2011) http://przyrbwn.icm.edu.pl/APP/PDF/119/a119z3p20.pdf
  • [11] D. Jacquemin, J. Preat, M. Charlot, V. Wathelet, J.M. Andre, E.A. Perpète, J. Chem. Phys. 121, 1736 (2004), doi: 10.1186/2193-1801-3-233
  • [12] E.A. Perpète, V. Wathelet, J. Preat, C. Lambert, D. Jacquemin, J. Chem. Theor. Comput. 2, 434 (2006), doi: 10.1021/ct050287w
  • [13] D. Jacquemin, V. Wathelet, J. Preat, E.A. Perpète, Spectrochim. Acta A 67A, 334 (2007), doi: 10.1016/j.saa.2006.07.023
  • [14] D. Jacquemin, X. Assfeld, J. Preat, E.A. Perpète, Mol. Phys. 105, 325 (2007), doi: 10.1080/00268970601140974
  • [15] D. Jacquemin, E.A. Perpète, I. Ciofini, C. Adamo, Acc. Chem. Res. 42, 326 (2009), doi: 10.1021/ar800163d
  • [15a] J. Fabian, Dyes Pigm. 84, 36 (2010), doi: 10.1016/j.dyepig.2009.06.008
  • [16] R. Chencier, Madder Red: A History of Luxury and Trade, Curzon Press, Richmond 2000
  • [17] D. Jacquemin, E. Brémond, A. Planchat, I. Ciofini, C. Adamo, Chem. Theory Comput. 7, 1882 (2011), doi: 10.1021/ct200259k
  • [18] N. Belghiti, M. Bennani, M. Hamidi, S.M. Bouzzine, M. Bouachrine, Afr. J. Pure Appl. Chem. 6, 164 (2012), doi: 10.5897/AJPAC12.021
  • [19] L. Shen, H.-F. Ji, H.-Y. Zhang, J. Mol. Struct. THEOCHEM 851, 220 (2008), doi: 10.1016/j.theochem.2007.11.009
  • [20] T. Joseph, C.H.T. Varghese, Y. Panicker, T. Thiemann, K. Viswanathan, C. Van Alsenoy, T.K. Manojkumar, Spectrochim. Acta Part A, Mol. Biomol. Spectrosc. 117, 413 (2014), doi: 10.1016/j.saa.2013.08.016
  • [21] D. Jacquemin, J. Preat, M. Charlot, V. Wathelet, J.-M. André, E.A. Perpète, J. Chem. Phys. 121, 1736 (2004), doi: 10.1063/1.1764497
  • [22] D. Guillaumont, S. Nakamura, Dyes Pigm. 46, 85 (2000), doi: 10.1016/S0143-7208(00)00030-9
  • [23] P.L. Polavarapu, J. Phys. Chem. 94, 8106 (1990), doi: 10.1021/j100384a024
  • [24] G. Keresztury, S. Holly, J. Varga, G. Besenyei, A.Y. Wang, J.R. Durig, Spectrochim. Acta A 49, 1993 (2007), doi: 10.1016/S0584-8539(09)91012-1
  • [25] P. Nallasamy, P.M. Anbarasan, S. Mohan, Turk. J. Chem. 26, 105 (2002)
  • [26] Handbook of Vibrational Spectroscopy, Eds. J.M. Chalmers, P.R. Griffiths, Vol. 1, Wiley, Chichester 2001, p. 71
  • [27] J. Karpagam, N. Sundaraganesan, S. Sebastian, S. Manoharan, M.Z. Kurt, J. Raman Spectrosc. 41, 53 (2010), doi: 10.1002/jrs.2408
  • [28] D.F. Waston, G.J. Meyer, Ann. Rev. Phys. Chem. 56, 119 (2005), doi: 10.1146/annurev.physchem.56.092503.141142
  • [29] R. Sánchez-de-Armas, M.A. San-Miguel, J. Oviedo, J. Fdez. Sanz, Comput. Theor. Chem. 975, 99 (2011), doi: 10.1016/j.comptc.2011.01.010
  • [30] W.R. Duncan, O.V. Prezhdo, J. Phys. Chem. B 109, 365 (2005), doi: 10.1021/jp046342z
  • [31] D.A. Kleinman, Phys. Rev. 126, 1977 (1962), doi: 10.1103/PhysRev.126.1977
  • [32] S. Arulmozhi, M. Victor Antony Raj, J. Madhavan, Der Chemica Sinica 2, 158 (2011) http://pelagiaresearchlibrary.com/der-chemica-sinica/vol2-iss6/DCS-2011-2-6-158-163.pdf
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv126n336kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.