Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2014 | 126 | 3 | 827-832

Article title

Kinetics and Mechanical Studies of Melaminium bis(trichloroacetate) dihydrate

Content

Title variants

Languages of publication

EN

Abstracts

EN
The thermal decomposition kinetics of melaminium bis(trichloroacetate) dihydrate (MTCA) has been studied by thermogravimetry and derivative thermogravimetry techniques using non-isothermal experiments at three different heating rates 10, 15, and 20°C min^{-1}. Non-isothermal studies of MTCA revealed that the decomposition occurs in three stages involving dehydration and decomposition. The apparent activation energy (E_{a}) and the pre-exponential factor (ln A) of each stage of thermal decomposition at various linear heating rates are calculated using Flynn-Wall, Friedman, Kissinger, and Kim-Park method. A significant variation of effective activation energy (E_{a}) with conversion (α) indicates that the process is kinetically complex. The linear relationship between the A and E_{a} values is well established (compensation effect). Isothermal kinetics of thermal decomposition of MTCA was found to obey Avrami-Erofeev's (A4) and power law (P3) equations. In addition to the above, mechanical properties have been estimated by Vicker's microhardness test for the grown crystal.

Keywords

Contributors

  • Department of Physics, Vel Tech Dr. RR & Dr. SR Technical University, Avadi, Chennai-62, India
author
  • Institute of Low Temperature and Structure Research, Polish Academy of Sciences P.O. Box 937, 50-950 Wrocław 2, Poland
  • St. Peter's University, Avadi, Chennai-54, India
author
  • Department of Physics, Presidency College, Chennai-5, India

References

  • [1] D. Sonal, S. Gupta Ranjith, A. Pardhan, O. Mareano, Noureddine Melikechi, C.F. Desai, J. Appl. Phys. 3.91, 3125 (2002), doi: 10.1063/1.1436287
  • [2] R. Ittyachan, P. Sagayaraj, J. Cryst. Growth. 243, 356 (2002), doi: 10.1016/S0022-0248(02)01536-1
  • [3] M.K. Marchewka, J. Baran, A. Pietraszko, A. Haznar, S. Debrus, H. Ratajczak, Solid State Sci. 5, 509 (2003), doi: 10.1016/S1293-2558(03)00029-3
  • [4] M.K. Marchewka, J. Janczak, S. Debrus, J. Baran, H. Ratajczak, Solid State Sci. 5, 643 (2003), doi: 10.1016/S1293-2558(03)00034-7
  • [5] S. Debrus, M.K. Marchewka, M. Drozd, H. Ratajczak, Opt. Mater. 29, 1058 (2007), doi: 10.1016/j.optmat.2006.04.004
  • [6] L. Costa, G. Camino, J. Therm. Anal. 34, 423 (1988), doi: 10.1007/BF01913181
  • [7] H. May, J. Appl. Chem. 9, 340 (1959), doi: 10.1002/jctb.5010090608
  • [8] N. Kanagathara, M.K. Marchewka, N. Sivakumar, K. Gayathri, N.G. Renganathan, S. Gunasekaran, G. Anbalagan, J. Therm. Anal. Calorim. 112, 1317 (2013), doi: 10.1007/s10973-012-2713-8
  • [9] N. Kanagathara, M.K. Marchewka, K. Pawlus, S. Gunasekaran, G. Anbalagan, J. Appl. Chem. 194576, 1 (2013), doi: 10.1155/2013/194576
  • [10] G.J. Perpetuo, J. Janczak, Acta Crystallogr. C 62, o372 (2006), doi: 10.1107/S0108270106015873
  • [11] N. Kanagathara, N.G. Renganathan, M.K. Marchewka, N. Sivakumar, K. Gayathri, P. Krishnan, S. Gunasekaran, G. Anbalagan, Spectrochim. Acta A 101, 112 (2013), doi: 10.1016/j.saa.2012.09.057
  • [12] Jianghong Gong, J. Mater. Sci. Lett. 19, 515 (2000), doi: 10.1023/A:1006709921847
  • [13] Sang Mi Shin, Seong Hun Kim, Macromol. Res. 17, 149 (2009), doi: 10.1007/BF03218671
  • [14] H. Flynn, L.A. Wall, J. Polym. Sci. Part B, Polym. Lett. 4, 323 (1966), doi: 10.1002/pol.1966.110040504
  • [15] H.E. Kissinger, Anal. Chem. 29, 1702 (1957), doi: 10.1021/ac60131a045
  • [16] S. Kim, J.K. Park, Thermochim. Acta 264, 137 (1995), doi: 10.1016/0040-6031(95)02316-T
  • [17] M.E. Brown, M. Maciejewski, S. Vyazovkin, R. Nomen, J. Sempere, A. Burnham, J. Opfermann, R. Strey, H.L. Anderson, A. Kemmler, R. Keuleers, J. Janssens, H.O. Desseyn, Chao-Rui Li, T.B. Tang, B. Roduit, J. Malek, T. Mitsuhashi, Thermochim. Acta 355, 125 (2000), doi: 10.1016/S0040-6031(00)00443-3
  • [18] E.G. Prout, F.C. Tompkins, Trans. Faraday Soc. 40, 488 (1944), doi: 10.1039/TF9444000488
  • [19] Jeya Rajendran, Lekshman Thanu Lingam, M. Jose, S. Jerome Das, J. Therm. Anal. Calorim. 103, 845 (2011), doi: 10.1007/s10973-010-1192-z
  • [20] K. Joseph, R. Sridharan, T. Gnanasekaran, J. Nucl. Mater. 281, 129 (2000), doi: 10.1016/S0022-3115(00)00241-5
  • [21] J.J. Zhang, R.F. Wang, J.B. Li, H.M. Liu, J. Therm. Anal. Calorim. 65, 241 (2001), doi: 10.1023/A:1011553324335
  • [22] B. Ducourant, R. Fourcade, G. Mascherpa, Rev. Chim. Miner. 20, 314 (1983)
  • [23] K. Li, X. Wang, D. Xue, Mater. Focus 1, 142 (2012), doi: 10.1166/mat.2012.1022
  • [24] K. Sangwal, Mater. Chem. Phys. 63, 145 (2000), doi: 10.1016/S0254-0584(99)00216-3
  • [25] J. Gong, H. Miao, Z. Zhao, Z. Guan, Mater. Sci. Eng. A 303, 179 (2001), doi: 10.1016/S0921-5093(00)01845-1
  • [26] B. Basu, Mukhopadhyay, N.K. Manisha, J. Eur. Ceram. Soc. 29, 801 (2009), doi: 10.1016/j.jeurceramsoc.2008.07.005
  • [27] E. Meyer, Ph.D. thesis, Materials Testing Laboratory at the Imperial School of Technology, Charlottenburg, Germany, Draft, 1951
  • [28] E.M. Onitsch, Microskopie 2, 131 (1947)
  • [29] V. Gupta, K. Bamzai, P.N. Kotru, B.M. Wanklyn, Mater. Chem. Phys. 89, 64 (2005), doi: 10.1016/j.matchemphys.2004.08.027
  • [30] C. Hayes, E.G. Kendall, Metallography 6, 275 (1973), doi: 10.1016/0026-0800(73)90053-0

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv126n335kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.