PL EN


Preferences help
enabled [disable] Abstract
Number of results
2014 | 126 | 3 | 777-782
Article title

Perturbed Infinite 3D Simple Cubic Network of Identical Capacitors

Content
Title variants
Languages of publication
EN
Abstracts
EN
The effective capacitance between the origin and any other lattice site, in an infinite 3D simple cubic network consisting of identical capacitors, is evaluated in terms of the lattice Green function of the network. The perfect case is reviewed shortly, while the perturbed case (a capacitor is removed) is studied in two cases. Numerical values of the effective capacitance are presented and the asymptotic behavior is studied for the both cases.
Keywords
Contributors
author
  • Department of Physics, College of Arts and Sciences, Palestine Technical University, P.O. Box 7, Tulkarm, Palestine
author
  • Department of General Studies, Yanbu Industrial College, P.O. Box 30436, Yanbu Industrial City, Saudi Arabia
author
  • Department of Physics, Al-Hussein Bin Talal University, Ma'an 71111, Jordan
author
  • Department of Physics, The University of Jordan, Amman 11942, Jordan
References
  • [1] G.L. Montent, Phys. Rev. B 7, 650 (1975), doi: 10.1103/PhysRevB.7.650
  • [2] G.F. Koster, D.C. Slater, Phys. Rev. 96, 1208 (1954), doi: 10.1103/PhysRev.96.1208
  • [3] V. Bryksin, P. Kleinert, Z. Phys. B, Condens. Matter 90, 167 (1993), doi: 10.1007/BF02198150
  • [4] P.H. Dederichs, K. Shroeder, R. Zeller, Point Defect in Metals II, Springer-Verlag, Berlin 1980, doi: 10.1007/BFb0043423
  • [5] B. Hughes, J. Math. Phys. 23, 1688 (1982), doi: 10.1063/1.525554
  • [6] G.F. Koster, J.C. Slater, Phys. Rev. 94, 1498 (1954), doi: 10.1103/PhysRev.94.1498
  • [7] N.W. Dalton, D.W. Wood, Proc. Phys. Soc. (London) 90, 4591 (1967), doi: 10.1088/0370-1328/90/2/316
  • [8] M. Lax, Phys. Rev. 97, 629 (1955), doi: 10.1103/PhysRev.85.621
  • [9] E. Montroll, G. Weiss, J. Math. Phys. 6, 168 (1965), doi: 10.1063/1.1704269
  • [10] E.W. Montroll, R.B. Potts, Phys. Rev. 100, 525 (1955), doi: 10.1103/PhysRev.100.525
  • [11] G.N. Watson, Quart. J. Math (Oxford) 10, 266 (1939), doi: 10.1093/qmath/os-10.1.266
  • [12] E.N. Economou, Green's Functions in Quantum Physics, 2nd ed., Springer-Verlag, Berlin 1983, doi: 10.1002/zamm.19800600318
  • [13] R. Brout, Phys. Rev. 118, 1009 (1960), doi: 10.1103/PhysRev.118.1009
  • [14] G.S. Joyce, J. Math. Phys. 12, 1390 (1971), doi: 10.1088/0305-4470/34/18/311
  • [15] S. Katsura, T. Horiguchi, J. Math. Phys. 12, 230 (1971), doi: 10.1063/1.1665581
  • [16] T. Morita, T. Horiguci, Math. Phys. 12, 986 (1971), doi: 10.1063/1.1665692
  • [17] T. Horiguchi, J. Phys. Soc. Jpn. 30, 1261 (1971), doi: 10.1143/JPSJ.30.1261
  • [18] M.L. Glasser, J. Math. Phys. 13, 1145 (1972), doi: 10.1063/1.1666113
  • [19] K. Mano, J. Math. Phys. 16, 1726 (1975), doi: 10.1063/1.522770
  • [20] M. Inoue, J. Math. Phys. 16, 809 (1975), doi: 10.1063/1.522609
  • [21] T. Morita, T. Horiguchi, J. Phys. C, Solid State Phys. 8, L232 (1975), doi: 10.1088/0022-3719/8/11/002
  • [22] M.L. Glasser, J. Boersma, J. Phys. A, Math. Gen. 33, 5017 (2000), doi: 10.1088/0305-4470/33/28/306
  • [23] J. Cserti, Am. J. Phys. 68, 896 (2000), doi: 10.1119/1.1285881
  • [24] J. Cserti, D. Gyula, P. Attila, Am. J. Phys. 70, 153 (2002), doi: 10.1119/1.1419104
  • [25] M. Jeng, Am. J. Phys. 68, 37 (2000), doi: 10.1119/1.19370
  • [26] R.E. Aitchison, Am. J. Phys. 32, 566 (1964), doi: 10.1119/1.1970777
  • [27] G. Venezian, 10.1119/1.17696 HUKHUKAm. J. Phys. 62, 1000 (1994)
  • [28] D. Atkinson, F.J. van Steenwijk, Am. J. Phys. 67, 486 (1999), doi: 10.1119/1.19311
  • [29] J.H. Asad, R.S. Hijjawi, A. Sakaji, J.M. Khaleh, Int. J. Theor. Phys. 43, 2223 (2004), doi: 10.1023/B:IJTP.0000049021.94530.6e
  • [30] J.H. Asad, R.S. Hijjawi, A. Sakaji, J.M. Khaleh, Int. J. Theor. Phys. 44, 471 (2004), doi: 10.1007/s10773-005-3977-6
  • [31] J.H. Asad, A.J. Sakaji, R.S. Hijjawi, J.M. Khalifeh, Eur. Phys. J. B 52, 365 (2006), doi: 10.1140/epjb/e2006-00311-x
  • [32] R.S. Hijjawi, J.H. Asad, A.J. Sakaji, M. Al-Sabayleh, J.M. Khalifeh, EPJ Appl. Phys. 41, 111 (2008), doi: 10.1051/epjap:2008015
  • [33] J. Cserti, G. Szechenyi, G. David, J. Phys. A, Math. Gen. 44, 215201 (2011), doi: 10.1088/1751-8113/44/21/215201
  • [34] F.Y. Wu, J. Phys. A, Math. Gen. 37, 6653-6673 (2004), doi: 10.1088/0305-4470/37/26/004
  • [35] J.W. Essam, F.Y. Wu, J. Phys. A, Math. Theor. 42, 025205 (2009), doi: 10.1088/1751-8113/42/2/025205
  • [36] N.Sh. Izmailian, M.-C. Huang, Phys. Rev. E 82, 011125 (2010), doi: 10.1103/PhysRevE.82.011125
  • [37] J.H. Asad, A.A. Diab, R.S. Hijjawi, J.M. Khalifeh, Eur. Phys. J. Plus 128, 1 (2013), doi: 10.1140/epjp/i2013-13002-8
  • [38] J.H. Asad, J. Stat. Phys. 150, 1177 (2013), doi: 10.1007/s10955-013-0716-x
  • [39] M.Q. Owaidat, R.S. Hijjawi, J.M. Khalifeh, Mod. Phys. Lett. B 19, 2057 (2010), doi: 10.1142/S0217984910024468
  • [40] M.Q. Owaidat, R.S. Hijjawi, J.M. Khalifeh, J. Phys. A, Math. Theor. 43, 375204 (2010), doi: 10.1088/1751-8113/43/37/375204
  • [41] M.Q. Owaidat, R.S. Hijjawi, J.M. Khalifeh, Int. J. Theor. Phys. 51, 3152 (2012), doi: 10.1007/s10773-012-1196-5
  • [42] J.H. Asad, R.S. Hijjawi, A.J. Sakaji, J.M. Khalifeh, Int. J. Mod. Phys. B 19, 3713 (2005), doi: 10.1142/S0217979205032401
  • [43] R.S. Hijjawi, J.H. Asad, A.J. Sakaji, J.M. Khalifeh, Int. J. Mod. Phys. B 21, 199 (2007), doi: 10.1142/S0217979207035972
  • [44] J.H. Asad, A.J. Sakaji, R.S. Hijjawi, J.M. Khalifeh, Eur. Phys. J. Appl. Phys. 40, 257 (2007)
  • [46] J.H. Asad, R.S. Hijjawi, A.J. Sakaji, J.M. Khalifeh, Eur. Phys. J. Appl. Phys. 32, 149 (2005), doi: 10.1051/epjap:2007160
  • [47] R.J. Duffin, E.P. Shelly, Duke Math. J. 25, 209 (1958), doi: 10.1215/S0012-7094-58-02521-3
  • [48] J.H. Asad, Mod. Phys. Lett. B. 27, 15 (2013), doi: 10.1142/S0217984913501121
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv126n326kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.