Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2014 | 126 | 3 | 732-736

Article title

Increase of Hydrogen Storage Capacity of CNTs by Using Transition Metal, Metal Oxide-CNT Nanocomposites

Authors

Content

Title variants

Languages of publication

EN

Abstracts

EN
In this paper, we examined the synergetic effect of transition metals or their oxides as decorative agent with carbon nanotubes on the hydrogen storage capacity. The TiO_2, Pd, and PdO shell nanoparticles were used as decorative agent on the surface of carbon nanotubes. The samples were investigated by X-ray diffraction, Raman spectroscopy and transmission electron microscopy. The thermal stability was investigated by thermogravimetric analysis testing. The hydrogen storage capacity was measured by a custom-made Sieverts apparatus. The Pd and TiO_2 doped carbon nanotube shows the most marked hydrogen storage capacity, 7 times higher than pristin carbon nanotubes after 30 min storage. The results show that the hydrogen storage capacity of the PdO shell- carbon nanotube composite is very low in comparison with those of two others and does not represent a significant difference with that of carbon nanotubes.

Keywords

Year

Volume

126

Issue

3

Pages

732-736

Physical description

Dates

published
2014-08
received
2012-12-10
(unknown)
2014-04-20

Contributors

author
  • Radiation Applications Research School, Nuclear Science and Technology Research Institute (NSTRI), Karaj, Iran
author
  • Young Researchers and Elite Club, South Tehran Branch, Islamic Azad University, Tehran, Iran

References

  • [1] A.C. Dillon, K.M. Jones, T.A. Bekkedahl, C.H. Kiang, D.S. Bethune, M.J. Heben, Nature 386, 377 (1997), doi: 10.1038/386377a0
  • [2] R.G. Ding, G.Q. Lu, Z.F. Yan, M.A. Wilson, J. Nanosci. Nanotechnol. 1, 7 (2001), doi: 10.1166/jnn.2001.012
  • [3] Y. Ye, C.C. Ahn, C. Witham, B. Fultz, J. Liu, A.G. Rinzler, D. Colbert, K.A. Smith, R.E. Smalley, Appl. Phys. Lett. 74, 2307 (1999), doi: 10.1063/1.123833
  • [4] S. Safa, M. Mojtahedzadeh, V. Fatollahy, O.R. Kakuee, Nano 5, 341 (2010), doi: 10.1142/S1793292010002256
  • [5] M. Hirscher, M. Becher, J. Nanosci. Nanotechnol. 3, 1 (2003), doi: 10.1166/jnn.2003.212
  • [6] W.C. Xu, K. Takahashi, Y. Matsuo, Y. Hattori, M. Kumagai, S. Ishiyama, K. Kaneko, S. Iijima, Int. J. Hyd. Energy 32, 2504 (2007), doi: 10.1016/j.ijhydene.2006.11.012
  • [7] M. Hirscher, M. Becher, M. Haluska, A. Quintel, V. Skakalova, Y.-M. Choi, U. Dettlaff-Weglikowska, S. Roth, I. Stepanek, P. Bernier, A. Leonhardt, J. Fink, J. Alloys Comp. 330, 654 (2002), doi: 10.1016/S0925-8388(01)01643-7
  • [8] DOE Hydrogen Program, Annual Program Report, Department of Energy, 2006, p. 273
  • [9] S.B. Mishra, S.K. Mohapatra, O.A. Graeve, M. Misra, Nanotechnology 19, 445607 (2008), doi: 10.1088/0957-4484/19/44/445607
  • [10] H. Wu, D. Wexler, A.R. Ranjbartoreh, H. Liu, G. Wang, Int. J. Hyd. Energy 35, 6345 (2010), doi: 10.1016/j.ijhydene.2010.03.103
  • [11] C.H. Chen, C.C. Huang, Micropor. Mesopor. Mater. 109, 549 (2008), doi: 10.1016/j.micromeso.2007.06.003
  • [12] R. Zacharia, S.U. Rather, S.W. Hwang, K.S. Nahm, Chem. Phys. Lett. 434, 286 (2007), doi: 10.1016/j.cplett.2006.12.022
  • [13] J. Ozaki, W. Ohizumi, A. Oya, M.J. Illan-Gomez, M.C. Roman-Martinez, A. Linares-Solano, Carbon 38, 778 (2000), doi: 10.1016/S0008-6223(00)00033-6
  • [14] H.S. Kim, H. Lee, K.S. Han, J.H. Kim, M.S. Song, M.S. Park, J. Phys. Chem. B 109, 8983 (2005), doi: 10.1021/jp044727b
  • [15] Y. Suttisawat, P. Rangsunvigit, B. Kitiyanan, M. Williams, P. Ndungu, M.V. Lototsky, Int. J. Hyd. Energy 34, 6669 (2009), doi: 10.1016/j.ijhydene.2009.06.063
  • [16] S.U. Rather, M. Naik, R. Zacharia, S.W. Hwang, R. Kim, K.S. Nahm, Int. J. Hyd. Energy 34, 961 (2009), doi: 10.1016/j.ijhydene.2008.09.089
  • [17] V.F. Kiselev, O.V. Krylov, Adsorption and Catalysis on Transition Metals and Their Oxides, Springer-Verlag, New York 1989, doi: 10.1007/978-3-642-73887-6
  • [18] A. Lueking, R.T. Yang, J. Catal. 206, 165 (2002), doi: 10.1006/jcat.2001.3472
  • [19] D.V. Bavykin, A.A. Lapkin, P.K. Plucinski, J.M. Friedrich, F.C. Walsh, J. Phys. Chem. B 41, 19422 (2005), doi: 10.1021/jp0536394
  • [20] A. Rashidi, A. Horri, B.A. Mohajeri, A. Saraie, S. Jozani, K.J. Nakhaeipor, Continuous process for producing carbon nanotubes, US patent 20080274277, A1, Mar. 20 (2007)
  • [21] K. Shen, D.L. Tierney, T. Pietrab, Phys. Rev. B 68, 165418 (2003), doi: 10.1103/PhysRevB.68.165418

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv126n316kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.