Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2014 | 126 | 3 | 717-724

Article title

Methane-Air Equivalence Ratio Effect on Premixed Turbulent Low Swirl Stabilized Flame

Content

Title variants

Languages of publication

EN

Abstracts

EN
This work presents a numerical simulation of premixed methane-air low swirl stabilized flame, the geometry describes a low swirl burner kind. Reynolds average Navier-Stokes standard κ-ε model for turbulence coupling to partially premixed model for combustion were used with varying methane equivalence ratio from 0.6 to 1.4. Parameters governing flame structure are investigated; velocity, temperature, CH_4 distribution and thermal nitric oxide apparitions fields, results are compared and validated with experimental and large eddy simulation works cited in references, they offer good similarities for all flame parameters studied. Actual study works to find equilibrium between the maximum of generated temperature and the minimum of thermal NO pollutant emissions for low swirl burners without neglecting the flame stabilization which must be maintained.

Keywords

EN

Year

Volume

126

Issue

3

Pages

717-724

Physical description

Dates

published
2014-08
received
2014-01-29
(unknown)
2014-05-09
(unknown)
2014-05-27

Contributors

author
  • Departement d'Énergétique, Faculté des Sciences de l'Ingénieur UMBB, Boumerdes, 35000, Algérie
  • Laboratoire de Systèmes d'Énergie, Faculté de Mécanique, USTHB, Alger, 16111, Algérie
author
  • Ecole Militaire Polytechniques, EMP, Alger, 16000, Algérie

References

  • [1] K. Truffin, Ph.D. thesis, Institut National Polytechnique de Toulouse, 2005
  • [2] D. Veynante, L. Vervisch, Prog. Energy Comb. Sci. 28, 266 (2002), doi: 10.1016/S0360-1285(01)00017-X
  • [3] Y. Huang, Y. Vigor, Prog. Energy Comb. Sci. 35, 293 (2009), doi: 10.1016/j.pecs.2009.01.002
  • [4] R.K. Cheng, Comb. Flame 101, 1 (1995), doi: 10.1016/0010-2180(94)00196-Y
  • [5] T. Plessing, C. Kortschik, N. Peters, M.S. Mansour, R.K. Cheng, Proc. Comb. Inst. 28, 359 (2000), doi: 10.1016/S0082-0784(00)80231-3
  • [6] J.B. Bell, M.S. Day, J.F. Grcar, Proc. Comb. Inst. 29, 1987 (2002), doi: 10.1016/S1540-7489(02)80242-5
  • [7] M.R. Johnson, D. Littlejohn, W.A. Nazeer, K.O. Smith, R.K. Cheng, Proc. Comb. Inst. 30, 2867 (2005), doi: 10.1016/j.proci.2004.07.040
  • [8] Y. Huang, V. Yang, Proc. Comb. Inst. 30, 1775 (2005), doi: 10.1016/j.proci.2004.08.23
  • [9] T.S. Cheng, C.Y. Wu, Y.H. Li, Y.C. Chao, Combust. Sci. Tech. 178, 1821 (2006), doi: 10.1080/00102200600790755
  • [10] J.B. Bell, R.K. Cheng, M.S. Day, I.G. Shepherd, Proc. Comb. Inst. 31, 1309 (2007), doi: 10.1016/j.proci.2006.07.21
  • [11] S. Pfadler, A. Leipertz, F. Dinkelacker, J. Wäsle, A. Winkler, T. Sattelmayer, Proc. Comb. Inst. 31, 1337 (2007), doi: 10.1016/j.proci.2006.07.09
  • [12] J. Galpin, A. Naudin, L. Vervisch, C. Angelberger, O. Colin, P. Domingo, Comb. Flame 155, 247 (2008), doi: 10.1016/j.combustflame.2008.04.004
  • [13] K.J. Nogenmyr, C. Fureby, X.S. Bai, P. Petersson, R. Collin, M. Linne, Comb. Flame 156, 25 (2009), doi: 10.1016/j.combustflame.2008.06.014
  • [14] D. Littlejohn, R.K. Cheng, D.R. Noble, L. Tim, J. Eng. Gas Turbines Power 132, 011502-1 (2010), doi: 10.1115/1.3124662
  • [15] P. Petersson, R. Wellander, J. Olofsson, H. Carlsson, C. Carlsson, B.B. Watz, N. Boetkjaer, M. Richter, M. Aldén, L. Fuchs, X.S. Bai, in: Proc. 16th Int. Symp. Appl. Laser Techn. Fluid Mech., Lisbon 2012
  • [16] Fluent 14, Guide theory, 2010
  • [17] B.E. Launder, D.B. Spalding, Lectures in Mathematical Models of Turbulence, Academic Press, London 1972
  • [18] V. Zimont, Exp. Thermal Fluid Sci. 21, 179 (2000), doi: 10.1016/S0894-1777(99)00069-2
  • [19] V. Zimont, W. Polifke, M. Bettelini, W. Weisenstein, J. Gas Turbines Power 120, 526 (1998), doi: 10.1115/1.2818178
  • [20] V.L. Zimont, A.N. Lipatnikov, Chem. Phys. Report 14, 993 (1995)
  • [21] S.B. Pope, Prog. Energy Comb. Sci. 11, 119 (1985), doi: 10.1016/0360-1285(85)90002-4
  • [22] W.L. Flower, R.K. Hanson, C.H. Kruger, in: 15th Int. Symp. Combustion, Combustion Institute, Pittsburgh 1975, p. 823
  • [23] J. Blauvens, B. Smets, J. Peters, in Ref. [15]
  • [24] J.P. Monat, R.K. Hanson, C. H. Kruger, in: 17th Int. Symp. Combustion, Combustion Institute, Pittsburgh 1979, p. 543
  • [25] A.J. Chorin, Math. Comp. 22, 745 (1968)
  • [26] J.P. Vandoormaal, G.D. Raithby, Numer. Heat Transfer 7, 147 (1984), doi: 10.1080/01495728408961817
  • [27] B. Pesenti, Ph.D. thesis, Faculté Polytechnique de MONS, Service de Thermique et Combustion, 2006
  • [28] A. Guessab, A. Aris, I. Gökalp, F. Tabet Helat, J. Phys. Sci. Appl. 36, 400 (2013)

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv126n313kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.