Journal
Article title
Title variants
Languages of publication
Abstracts
The molecular structure of 1-(5-bromothiophen-2-yl)-3-(4-nitrophenyl)prop-2-en-1-one with C_{13}H_8BrNO_3S empirical formula was simulated using B3LYP and CAM-B3LYP levels of density functional theory. After BTNP was optimized on the ground state, its characterization was enhanced via IR, NMR and UV-vis spectroscopies. Conformational analysis was performed based on B3LYP level so as to find the stable conformers of BTNP. Electronic transitions were calculated, and the important contributions from the molecular orbitals to the electronic transitions were investigated. HOMO and LUMO energies were calculated, and obtained energies displayed that charge transfer occurs in BTNP. It was displayed that BTNP is an efficient NLO material due to the coplanar of phenyl-nitro group and carbonyl group. NBO analysis also proved that charge transfer, conjugative interactions and intramolecular hydrogen bonding interactions occur through BTNP.
Discipline
Journal
Year
Volume
Issue
Pages
679-688
Physical description
Dates
published
2014-08
received
2013-07-22
(unknown)
2014-03-09
Contributors
author
- Sakarya University, Faculty of Arts and Sciences, Department of Physics, 54187, Sakarya, Turkey
author
- Sakarya University, Faculty of Arts and Sciences, Department of Physics, 54187, Sakarya, Turkey
author
- Sakarya University, Faculty of Arts and Sciences, Department of Physics, 54187, Sakarya, Turkey
References
- [1] P.N. Prasad, D.J. Williams, Introduction to Nonlinear Optical Effects in Molecules and Polymers, Wiley, New York 1991
- [2] H.R. Nalwa, S. Miyata, Nonlinear Optics of Organic Molecules and Polymers, CRC Press, Boca Raton, FL 1997
- [3] S.R. Marder, J.E. Sohn, G.D. Stucky, in: ACS Symp. Series 455, American Chemical Society, Washington 1991
- [4] O. Keller, Nonlinear Optics in Solids, in: Proc. Int. Summer School, Springer, Berlin 1990
- [5] H. Pir, N. Gunay, D. Avcı, Y. Atalay, Spectrochim. Acta A 96, 916 (2012), doi: 10.1016/j.saa.2012.07.044
- [6] H. Pir, N. Gunay, Ö. Tamer, D. Avcı, Y. Atalay, Spectrochim. Acta A 112, 331 (2013), doi: 10.1016/j.saa.2013.04.063
- [7] A. Abbotto, L. Beverina, N. Manfredi, G.A. Pagani, G. Archetti, H.G. Kuball, C. Wittenburg, J. Heck, J. Holtmann, Chem. Eur. J. 15, 6175 (2009), doi: 10.1002/chem.200900287
- [8] J.A. Davies, A. Elangovan, P.A. Sullivan, B.C. Olbricht, D.H. Bale, T.R. Ewy, C.M. Isborn, B.E. Eichinger, B.H. Robinson, P.J. Reid, X. Li, L.R. Dalton, J. Am. Chem. Soc. 130, 10565 (2008), doi: 10.1021/ja8007424
- [9] E.M. Breitung, C.-F. Shu, R.J. McMahon, J. Am. Chem. Soc. 122, 1154 (2000), doi: 10.1021/ja9930364
- [10] I.D.L. Albert, T.J. Marks, M.A. Ratner, J. Am. Chem. Soc. 119, 6575 (1997), doi: 10.1021/ja962968u
- [11] A.N. Prabhu, A. Jayarama, K. Subrahmanya Bhat, V. Upadhyaya, J. Mol. Struct. 1031, 79 (2013), doi: 10.1016/j.molstruc.2012.06.057
- [12] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M.I. Shida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, N.J. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, Ö. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox, Gaussian, Inc., Wallingford CT Gaussian 09, Revision A.1, Gaussian, Inc., Wallingford CT, 2009
- [13] R. Dennington, T. Keith, J. Millam, Semichem Inc., Shawnee Mission KS, GaussView, Version 5 (2009)
- [14] C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37, 785 (1988), doi: 10.1103/PhysRevB.37.785
- [15] A.D. Becke, J. Chem. Phys. 98, 5648 (1993), doi: 10.1063/1.464913
- [16] T. Yanai, D. Tew, N. Handy, Chem. Phys. Lett. 393, 51 (2004), doi: 10.1016/j.cplett.2004.06.011
- [17] M.J. Frisch, J.A. Pople, J.S. Binkley, J. Chem. Phys. 80, 3265 (1984), doi: 10.1063/1.447079
- [18] S.I. Gorelsky, A.B.P. Lever, J. Organomet. Chem. 635, 187 (2001), doi: 10.1016/S0022-328X(01)01079-8
- [19] K. Wolinski, J.F. Hinton, P. Pulay, J. Am. Chem. Soc. 112, 8251 (1990), doi: 10.1021/ja00179a005
- [20] W.P. Oziminski, J.C. Dobrowolski, J. Phys. Org. Chem. 22, 769 (2009), doi: 10.1002/poc.1530
- [21] J.P. Merrick, D. Moran, L. Radom, J. Phys. Chem. A 111, 11683 (2007), doi: 10.1021/jp073974n
- [22] T. Arora, H. Ali, W.A. Burns, E. Koizumi, H. Koizumi, Chem. Phys. Lett. 502, 253 (2011), doi: 10.1016/j.cplett.2010.12.035
- [23] M. Silverstein, G.C. Basseler, C. Morill, Spectrometric Identification of Organic Compounds, Wiley, New York 1981
- [24] G. Keresztury, in: Handbook of Vibrational Spectroscopy, Eds. J.M. Chalmers, P.R. Griffiths, Vol. 1, Wiley, New York 2002
- [25] G. Varsanyi, Assignments of Vibrational Spectra of 700 Benzene Derivatives, Wiley, New York 1974
- [26] C. Sridevi, G. Velraj, Spectrochim. Acta A 107, 334 (2013), doi: 10.1016/j.saa.2013.01.044
- [27] H.O. Kalinowski, S. Berger, S. Braun, Carbon-13 NMR Spectroscopy, Wiley, Chichester 1988
- [28] F.L. Tobiason, J.H. Goldstein, Spectrochim. Acta A 23, 1385 (1967), doi: 10.1016/0584-8539(67)80360-X
- [29] K. Fukui, Science 218, 747 (1982), doi: 10.1126/science.218.4574.747
- [30] D. Avcı, Y. Atalay, Struct. Chem. 20, 185 (2009), doi: 10.1007/s11224-008-9400-1
- [31] M. Dinçer, D. Avcı, M. Şekerci, Y. Atalay, J. Mol. Mod. 14, 823 (2008), doi: 10.1007/s00894-008-0324-x
- [32] D. Avcı, Spectrochim. Acta A 82, 37 (2011), doi: 10.1016/j.saa.2011.06.037
- [33] F. Weinhold, C. Landis, Valency and Bonding: A Natural Bond Orbital Donor-Acceptor Perspective, Cambridge University Press, Cambridge 2005
- [34] A.E. Reed, L.A. Curtiss, F. Weinhold, Chem. Rev. 88, 899 (1988), doi: 10.1021/cr00088a005
- [35] H. Ratajczak, S. Debrus, M. May, J. Barycki, J. Baran, Bull. Polish Acad. Sci. 48, 189 (2000)
- [36] J.L. Quadar, R. Hierle, J. Appl. Phys. 48, 2699 (1977), doi: 10.1063/1.324120
- [37] P. Kaatz, E.A. Donley, D.P. Shelton, J. Chem. Phys. 108, 849 (1998), doi: 10.1063/1.475448
- [38] L.T. Cheng, W. Tam, S.H. Stevenson, G.R. Meredith, G. Rikken, S.R. Marder, J. Phys. Chem. 95, 10631 (1991), doi: 10.1021/j100179a026
- [39] R.S. Mulliken, J. Chem. Phys. 23, 1833 (1955), doi: 10.1063/1.1740588
- [40] V. Mukherjee, N.P. Singh, R.A. Yadav, Spectrochim. Acta A 73, 249 (2009), doi: 10.1016/j.saa.2009.02.014
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv126n307kz