EN
Geometric phase for novel analytical solutions (Barnes and Das Sarma) of time-dependent two-level quantum systems is discussed, specifically for a general single-axis driving term, which is represented by a function J(t) in the Hamiltonian, and its corresponding evolution operator. It is demonstrated how general results for corresponding phases (total, dynamic and geometric) can be obtained. Using a specific case, it was found that over time in which the driving field is appreciably different from zero, the corresponding geometric phase changes (in the specific example by Δ β ≈ 0.8 radians) thus enabling detection. The results are relevant to qubit control and to quantum computing applications.