Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2014 | 126 | 3 | 670-673

Article title

Geometric Phase for Analytically Solvable Driven Time-Dependent Two-Level Quantum Systems

Content

Title variants

Languages of publication

EN

Abstracts

EN
Geometric phase for novel analytical solutions (Barnes and Das Sarma) of time-dependent two-level quantum systems is discussed, specifically for a general single-axis driving term, which is represented by a function J(t) in the Hamiltonian, and its corresponding evolution operator. It is demonstrated how general results for corresponding phases (total, dynamic and geometric) can be obtained. Using a specific case, it was found that over time in which the driving field is appreciably different from zero, the corresponding geometric phase changes (in the specific example by Δ β ≈ 0.8 radians) thus enabling detection. The results are relevant to qubit control and to quantum computing applications.

Keywords

EN

Year

Volume

126

Issue

3

Pages

670-673

Physical description

Dates

published
2014-08
received
2013-05-11
(unknown)
2014-04-16
(unknown)
2014-05-23

Contributors

author
  • Institute of Physics, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia
author
  • Institute of Physics, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia
author
  • Institute of Physics, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia
author
  • Institute of Physics, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia
author
  • Institute of Physics, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia

References

  • [1] L. Landau, Phys. Z. Sov. 2, 46 (1932)
  • [2] C. Zener, Proc. R. Soc. A 137, 696 (1932), doi: 10.1098/rspa.1932.0165
  • [3] I. Rabi, Phys. Rev. 51, 652 (1937), doi: 10.1103/PhysRev.51.652
  • [4] E.T. Jaynes, F.W. Cummings, Proc. IEEE 51, 89 (1963), doi: 10.1109/PROC.1963.1664
  • [5] S.L. McCall, E.L. Hahn, Phys. Rev. 183, 457 (1969), doi: 10.1103/PhysRev.183.457
  • [6] S.E. Economou, L.J. Sham, Y. Wu, D.G. Steel, Phys. Rev. B 74, 205415 (2006), doi: 10.1103/PhysRevB.74.205415
  • [7] A. Greilich, S.E. Economou, S. Spatzek, D.R. Yakovlev, D. Reuter, A.D. Wieck, T.L. Reineckee, M. Bayer, Nature Phys. 5, 262 (2009), doi: 10.1038/nphys1226
  • [8] E. Poem, O. Kenneth, Y. Kodriano, Y. Benny, S. Khatsevich, J.E. Avron, D. Gershoni, Phys. Rev. Lett. 107, 087401 (2011), doi: 10.1103/PhysRevLett.107.087401
  • [9] P.K. Jha, Y.V. Rostovtsev, Phys. Rev. A 81, 033827 (2010), doi: 10.1103/PhysRevA.81.033827
  • [10] A. Gangopadhyay, M. Dzero, V. Galitski, Phys. Rev. B 82, 024303 (2010), doi: 10.1103/PhysRevB.82.024303
  • [11] Q. Xie, W. Hai, Phys. Rev. A 82, 032117 (2010), doi: 10.1103/PhysRevA.82.032117
  • [12] E. Barnes, S. Das Sarma, Phys. Rev. Lett. 109, 060401 (2012), doi: 10.1103/PhysRevLett.109.060401
  • [13] M.V. Berry, Proc. R. Soc. Lond. A 392, 45 (1984), doi: 10.1098/rspa.1984.0023
  • [14] M.V. Berry, J. Phys. A, Math. Gen. 18, 15 (1985), doi: 10.1088/0305-4470/18/1/012
  • [15] Y. Aharonov, J. Anandan, Phys. Rev. Lett. 58, 1593 (1987), doi: 10.1103/PhysRevLett.58.1593
  • [16] J. Samuel, R. Bhandari, Phys. Rev. Lett. 60, 2339 (1988), doi: 10.1103/PhysRevLett.60.2339
  • [17] S. Pancharatnam, Proc. Indian Acad. Sci. A 44, 247 (1956)
  • [18] Collected Works of S. Pancharatnam, Oxford University Press, London 1975
  • [19] D.M. Tong, J.L. Chen, J.F. Du, Chin. Phys. Lett. 20, 793 (2003), doi: 10.1088/0256-307X/20/6/304
  • [20] I. Mendaš, Phys. Rev. A 55, 1514 (1997), doi: 10.1103/PhysRevA.55.1514
  • [21] I. Mendaš, Phys. Rev. A 67, 044101 (2003), doi: 10.1103/PhysRevA.67.044101
  • [22] M.A. Bouchene, M. Abdel-Aty, Phys. Rev. A 79, 055402 (2009), doi: 10.1103/PhysRevA.79.055402
  • [23] E. Sjöqvist, A.K. Pati, A. Ekert, J.S. Anandan, M. Ericsson, D.K.L. Oi, V. Vedral, Phys. Rev. Lett. 85, 2845 (2000), doi: 10.1103/PhysRevLett.85.2845
  • [24] A. Ekert, M. Ericsson, P. Hayden, H. Inamori, J.A. Jones, D.K.L. Oi, V. Vedral, J. Mod. Opt. 47, 2501 (2000), doi: 10.1080/09500340008232177
  • [25] J.A. Jones, V. Vedral, A. Ekert, G. Castagnoli, Nature 403, 869 (2000), doi: 10.1038/35002528
  • [26] M. Johansson, E. Sjöqvist, I. Mauritz Andersson, M. Ericsson, B. Hessmo, K. Singh, D.M. Tong, Phys. Rev. A 86, 062322 (2012), doi: 10.1103/PhysRevA.86.062322
  • [27] S. Filipp, J. Klepp, Y. Hasegawa, C. Plonka-Spehr, U. Schmidt, P. Geltenbort, H. Rauch, Phys. Rev. Lett. 102, 030404 (2009), doi: 10.1103/PhysRevLett.102.030404

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv126n305kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.