PL EN


Preferences help
enabled [disable] Abstract
Number of results
2014 | 126 | 3 | 663-670
Article title

Some Aspects Concerning the "Memorization Effect" in Complex Fluid

Content
Title variants
Languages of publication
EN
Abstracts
EN
In the frame of a non-standard scale relativity model, the specific momentum, states density and internal energy conservations laws are obtained. The chaoticity, either through turbulence in the fractal hydrodynamics approach, or through stochasticization in the Schrödinger type approach, is generated only by the non-differentiability of the movement trajectories of the complex fluid entities. Using the conservation laws mentioned above, by numerical simulations, hysteretic type effects (dynamics of hysteretic cycles) occur.
Keywords
EN
Year
Volume
126
Issue
3
Pages
663-670
Physical description
Dates
published
2014-08
received
2014-02-04
References
  • [1] G. Luis, Complex Fluids, Springer, 1993, p. 415
  • [2] T.Y. Hou, Multi-Scale Phenomena in Complex Fluids: Modeling, Analysis and Numerical Simulations, World Sci., Singapore 2009
  • [3] O.D. Mitchell, B.G. Thomas, Mathematical Modeling for Complex Fluids and Flows, Springer, Berlin 2012
  • [4] N. Keim, M. Garcia, P.E. Arratia, Phys. Fluids 24, 081703 (2012), doi: 10.1063/1.4746792
  • [5] C.H. Bennett, in: Complexity, Entropy, and the Physics of Information, Ed. W.H. Zurek, Addison-Wesley, Reading, MA, 1990, p. 443
  • [6] R. Badii, A. Politi, Complexity: Hierarchical Structure and Scaling in Physics, Cambridge Nonlinear Science Series, 6, Cambridge University Press, Cambridge 1997
  • [7] G.W. Flake, The Computational Beauty of Nature, MIT Press, Cambridge, MA 1998
  • [8] M. Mitchell, Complexity: A Guided Tour, Oxford University Press, Oxford 2009
  • [9] B. Mandelbrot, The Fractal Geometry of Nature, W.H. Freeman, New York 1983
  • [10] L. Nottale, Fractal Space-Time and Microphysics: Towards a Theory of Scale Relativity, World Sci., Singapore 1993
  • [11] L. Nottale, Scale Relativity and Fractal Space-Time - A New Approach to Unifying Relativity and Quantum Mechanics, Imperial College Press, London 2011
  • [12] M.S. El Naschie, O.E. Rössler, I. Prigogine, Quantum Mechanics, Diffusion and Chaotic Fractals, Elsevier, Oxford 1995
  • [13] V. Nedeff, E. Moşneguţu, M. Panainte, M. Ristea, G. Lazăr, D. Scurtu, B. Ciobanu, A. Timofte, S. Toma, M. Agop, Powder Technol. 221, 312 (2012), doi: 10.1016/j.powtec.2012.01.019
  • [14] V. Nedeff, C. Bejenariu, G. Lazar, M. Agop, Powder Technol. 235, 685 (2013), doi: 10.1016/j.powtec.2012.11.027
  • [15] M. Agop, L. Chicos, M. Gırţu, Acta Phys. Pol. A 112, 3 (2007) http://przyrbwn.icm.edu.pl/APP/PDF/112/a112z101.pdf
  • [16] M. Agop, P. Nica, A. Harabagiu, Acta Phys. Pol. A 113, 1571 (2008) http://przyrbwn.icm.edu.pl/APP/PDF/113/a113z602.pdf
  • [17] A. Timofte, I. Casian Botez, D. Scurtu, M. Agop, Acta Phys. Pol. A 119, 304 (2011) http://przyrbwn.icm.edu.pl/APP/PDF/119/a119z3p05.pdf
  • [18] M. Colotin, G.O. Pompilian, P. Nica, S. Gurlui, V. Paun, M. Agop, Acta Phys. Pol. A 116, 157 (2009), http://przyrbwn.icm.edu.pl/APP/PDF/116/a116z208.pdf
  • [19] M. Agop, P. Nica, O. Niculescu, D.G. Dumitru, J. Phys. Soc. Japan 81, 064502 (2012), doi: 10.1143/JPSJ.81.064502
  • [20] M. Agop, N. Forna, I. Casian-Botez, J. Comp. Theor. Nanostruct. 5, 483 (2008), doi: 10.1166/jctn.2008.006
  • [21] M. Agop, C. Murgulet, Chaos Solitons Fractals 32, 1231 (2007), doi: 10.1016/j.chaos.2006.09.038
  • [22] M. Agop, P. Nica, M. Girtu, Gen. Rel. Gravit. 40, 35 (2008), doi: 10.1007/s10714-007-0519-y
  • [23] M. Agop, V. Paun, A. Harabagiu, Chaos Solitons Fractals 37, 1269 (2008), doi: 10.1016/j.chaos.2008.01.006
  • [24] I. Casian-Botez, M. Agop, P. Nica, V. Paun, G.V. Munceleanu, J. Comp. Theor. Nanostruct. 7, 2271 (2010), doi: 10.1166/jctn.2010.1608
  • [25] C. Ciubotariu, M. Agop, Gen. Rel. Gravit. 28, 405 (1996), doi: 10.1007/BF02105084
  • [26] I. Gottlieb, M. Agop, M. Jarcau, Chaos Solitons Fractals 19, 705 (2004), doi: 10.1016/S0960-0779(03)00244-3
  • [27] S. Gurlui, M. Agop, M. Strat, S. Bacaita, Phys. Plasmas 13, 705 (2006), doi: 10.1063/1.2205195
  • [28] G.V. Munceleanu, V.P. Paun, I. Casian-Botez, M. Agop, Int. J. Bifurc. Chaos 21, 603 (2011), doi: 10.1142/S021812741102888X
  • [29] S. Bacaita, C. Uritu, M. Popa, A. Uliniuc, C. Peptu, M. Agop, Smart Mater. Res. 2012, 26460948 (2012), doi: 10.1155/2012/264609
  • [30] L. Landau, E.M. Lifshitz, Fluid Mechanics, 2nd ed., Butterworth-Heinemann, Oxford 1987
  • [31] O.C. Zinkiewicz, R.L. Taylor, J.Z. Zhu, The Finite Element Method: Its Basis and Fundamentals, Butterworth-Heinemann, Oxford 2005
  • [32] P. Nica, M. Agop, S. Gurlui, C. Bejinariu, C. Focsa, Jpn. J. Appl. Phys. 51, 106102 (2012), doi: 10.1143/JJAP.51.106102
  • [33] P. Nica, P. Vizureanu, M. Agop, S. Gurlui, C. Focsa, N. Forna, P.D. Ioannou, Z. Borsos, Jpn. J. Appl. Phys. 48, 066001 (2009), doi: 10.1143/JJAP.48.066001
  • [34] S. Gurlui, M. Agop, P. Nica, M. Ziskind, C. Focşa, Phys. Rev. E 78, 026405 (2008), doi: 10.1103/PhysRevE.78.026405
  • [35] C.P. Cristescu, Nonlinear Dynamics and Chaos: Theoretical Fundaments and Applications, Romanian Acad. Pub. House, Bucuresti 2008
  • [36] E.A. Jackson, Perspectives in Nonlinear Dynamics, Cambridge Univ. Press, Cambridge 1991
Document Type
Publication order reference
YADDA identifier
bwmeta1.element.bwnjournal-article-appv126n304kz
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.