PL EN


Preferences help
enabled [disable] Abstract
Number of results
2014 | 126 | 3 | 652-656
Article title

Non-Markovian Dynamic of Gaussian Quantum Discord in Continuous-Variable Systems

Authors
Content
Title variants
Languages of publication
EN
Abstracts
EN
We show the special dynamic characteristic of Gaussian quantum discord, exhibited by two-mode Gaussian symmetric squeezed thermal states (STS) in continuous-variable (CV) systems with a common non-Markovian environment, is definitely different from Markov processes. We demonstrate that Gaussian quantum discord can be created whenever the information flow from environment back to the system. We also show that the rate of decrease for Gaussian quantum discord is related to the coupling constant. We discover that the initial value of Gaussian quantum discord is determined by the average number of thermal photons of the system.
Keywords
Year
Volume
126
Issue
3
Pages
652-656
Physical description
Dates
published
2014-08
received
2014-01-29
(unknown)
2014-06-09
References
  • [1] M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information, Cambridge University Pub., Cambridge 2000, doi: 10.1119/1.1463744
  • [2] V. Vedral, Phys. Rev. Lett. 90, 050401 (2003), doi: 10.1103/PhysRevLett.90.050401
  • [3] H. Ollivier, W.H. Zurk, Phys. Rev. Lett. 88, 017901 (2001), doi: 10.1103/PhysRevLett.88.017901
  • [4] T. Yu, J.H. Eberly, Science 323, 598 (2009), doi: 10.1126/science.1167343
  • [5] A. Datta, A. Shaji, C.M. Caves, Phys. Rev. Lett. 100, 050502 (2008), doi: 10.1103/PhysRevLett.100.050502
  • [6] R. Dillenschneider, Phys. Rev. B 78, 224413 (2008), doi: 10.1103/PhysRevB.78.224413
  • [7] M.S. Sarandy, Phys. Rev. A. 80, 022108 (2009), doi: 10.1103/PhysRevA.80.022108
  • [8] A. Shabani, D.A. Lidar, Phys. Rev. Lett. 102, 100402 (2009), doi: 10.1103/PhysRevLett.102.100402
  • [9] A. Datta, Phys. Rev. A 80, 052304 (2009), doi: 10.1103/PhysRevA.80.052304
  • [10] P. Giorda, M. G. A. Paris, Phys. Rev. Lett. 105, 020503 (2010), doi: 10.1103/PhysRevLett.105.020503
  • [11] G. Adesso, A. Datta, Phys. Rev. Lett. 105, 030501 (2010), doi: 10.1103/PhysRevLett.105.030501
  • [12] H.P. Breuer, F. Petruccione, The Theory of Open Quantum Systems, Oxford University Pub., Oxford 2007, doi: 10.1093/9780199213900.001.0001
  • [13] U. Weiss, Quantum Dissipative Systems, World Scientific, Singapore 2008, doi: 10.1142/6738
  • [14] V. Gorini, A. Kossakowski, E. C. G. Sudarshan, J. Math. Phys. (N.Y.) 17, 821 (1976), doi: 10.1063/1.522979
  • [15] G. Lindblad,Commun. Math. Phys. 48, 119 (1976), doi: 10.1007/BF01608499
  • [16] L. Mazzola, S. Maniscalco, J. Piilo, K.A. Suominen, B.M. Garraway, Phys. Rev. A 80, 012104 (2009), doi: 10.1103/PhysRevA.80.012104
  • [17] S. Maniscalco, S. Olivares, M.G.A. Paris, Phys. Rev. A 75, 062119 (2007), doi: 10.1103/PhysRevA.75.062119
  • [18] H.P. Breuer, E.M. Laine, J. Piilo, Phys. Rev. Lett. 103, 210401 (2009), doi: 10.1103/PhysRevLett.103.210401
  • [19] M.M. Wolf, J. Eisert, T.S. Cubitt, J.I. Cirac, Phys. Rev. Lett. 101, 150402 (2008), doi: 10.1103/PhysRevLett.101.150402
  • [20] A. Rivas, S.F. Huelga, M.B. Plenio, Phys. Rev. Lett. 105, 050403 (2010), doi: 10.1103/PhysRevLett.105.050403
  • [21] B. Wang, Z.-Y. Xu, Z.-Q. Chen, M. Feng, Phys. Rev. A 81, 014101 (2010), doi: 10.1103/PhysRevA.81.014101
  • [22] F. F. Fanchini, T. Werlang, C.A. Brasil, L.G.E. Arruda, A.O. Caldeira, Phys. Rev. A 81, 052107 (2010), doi: 10.1103/PhysRevA.81.052107
  • [23] S. Alipour, A. Mani, A.T. Rezakhani, Phys. Rev. A 85, 052108 (2012), doi: 10.1103/PhysRevA.85.052108
  • [24] R. Vasile, S. Maniscalco, M.G.A. Paris, H.P. Breuer, J. Piilo, Phys. Rev. A 84, 052118 (2011), doi: 10.1103/PhysRevA.84.052118
  • [25] M. Takeoka, M. Sasaki, Phys. Rev. A 78, 022320 (2008), doi: 10.1103/PhysRevA.78.022320
Document Type
Publication order reference
YADDA identifier
bwmeta1.element.bwnjournal-article-appv126n302kz
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.