Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2014 | 126 | 2 | 641-644

Article title

Similar Submodules and Coincidence Site Modules

Authors

Content

Title variants

Languages of publication

EN

Abstracts

EN
We consider connections between similar sublattices and coincidence site lattices and, more generally, between similar submodules and coincidence site modules of general (free) ℤ-modules in ℝ^d. In particular, we generalise results obtained by S. Glied and M. Baake on similarity and coincidence isometries of lattices and certain lattice-like modules called S-modules. An important result is that the factor group OS(M)/OC(M) is Abelian for arbitrary ℤ-modules M, where OS(M) and OC(M) are the groups of similar and coincidence isometries, respectively. In addition, we derive various relations between the indices of coincidence site lattices and their corresponding similar sublattices.

Keywords

EN

Year

Volume

126

Issue

2

Pages

641-644

Physical description

Dates

published
2014-08

Contributors

author
  • Fakultät für Mathematik, Universität Bielefeld, 33615 Bielefeld, Germany

References

  • [1] G. Friedel, Leçons de Cristallographie, Blanchard, Paris 1911
  • [2] M.L. Kronberg, F.H. Wilson, Trans. A.I.M.E. 185, 501 (1949)
  • [3] S. Ranganathan, Acta Crystallogr. 21, 197 (1966), doi: 10.1107/S0365110X66002615
  • [4] W. Bollmann, Crystal Defects and Crystalline Interfaces, Springer, Berlin 1970
  • [5] H. Grimmer, W. Bollmann, D. H. Warrington, Acta Crystallogr. A 30, 197 (1974), doi: 10.1107/S056773947400043X
  • [6] P.A.B. Pleasants, M. Baake, J. Roth, J. Math. Phys. 37, 1029 (1996), doi: 10.1063/1.531424
  • [7] M. Baake, in: The Mathematics of Long-Range Aperiodic Order, Ed.: R.V. Moody, Kluwer, Dordrecht 1997, p. 9
  • [8] D.H. Warrington, Mater. Sci. Forum 126-128, 57 (1993), doi: 10.4028/www.scientific.net/MSF.126-128.57
  • [9] D.H. Warrington, R. Lück, in Proc. Intl. Conf. on Aperiodic Crystals (Les Diablerets), Eds.: G. Chapuis, W. Paciorek, World Scientific, Singapore 1994, p. 30
  • [10] J.H. Conway, E.M. Rains, N.J.A. Sloane, Can. J. Math. 51, 1300 (1999), doi: 10.4153/CJM-1999-059-5
  • [11] M. Baake, U. Grimm, Z. Kristallogr. 219, 72 (2004), doi: 10.1524/zkri.219.2.72.26322
  • [12] M. Baake, M. Heuer, R.V. Moody, J. Algebra 320, 1391 (2008), doi: 10.1016/j.jalgebra.2008.04.021
  • [13] M. Baake, M. Heuer, U. Grimm, P. Zeiner, Europ. J. Combinatorics 29, 1808 (2008), doi: 10.1016/j.ejc.2008.01.012
  • [14] S. Glied, M. Baake, Z. Kristallogr. 223, 770 (2008), doi: 10.1524/zkri.2008.1054
  • [15] S. Glied, Can. Math. Bull. 55, 98 (2011), doi: 10.4153/CMB-2011-076-x
  • [16] P. Zeiner, Z. Kristallogr. 221, 105 (2006), doi: 10.1524/zkri.2006.221.2.105
  • [17] P. Zeiner, Z. Kristallogr. 220, 915 (2005), doi: 10.1524/zkri.2005.220.11_2005.915
  • [18] P. Zeiner, in preparation

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv126n254kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.