PL EN


Preferences help
enabled [disable] Abstract
Number of results
2014 | 126 | 2 | 641-644
Article title

Similar Submodules and Coincidence Site Modules

Authors
Content
Title variants
Languages of publication
EN
Abstracts
EN
We consider connections between similar sublattices and coincidence site lattices and, more generally, between similar submodules and coincidence site modules of general (free) ℤ-modules in ℝ^d. In particular, we generalise results obtained by S. Glied and M. Baake on similarity and coincidence isometries of lattices and certain lattice-like modules called S-modules. An important result is that the factor group OS(M)/OC(M) is Abelian for arbitrary ℤ-modules M, where OS(M) and OC(M) are the groups of similar and coincidence isometries, respectively. In addition, we derive various relations between the indices of coincidence site lattices and their corresponding similar sublattices.
Keywords
EN
Year
Volume
126
Issue
2
Pages
641-644
Physical description
Dates
published
2014-08
References
  • [1] G. Friedel, Leçons de Cristallographie, Blanchard, Paris 1911
  • [2] M.L. Kronberg, F.H. Wilson, Trans. A.I.M.E. 185, 501 (1949)
  • [3] S. Ranganathan, Acta Crystallogr. 21, 197 (1966), doi: 10.1107/S0365110X66002615
  • [4] W. Bollmann, Crystal Defects and Crystalline Interfaces, Springer, Berlin 1970
  • [5] H. Grimmer, W. Bollmann, D. H. Warrington, Acta Crystallogr. A 30, 197 (1974), doi: 10.1107/S056773947400043X
  • [6] P.A.B. Pleasants, M. Baake, J. Roth, J. Math. Phys. 37, 1029 (1996), doi: 10.1063/1.531424
  • [7] M. Baake, in: The Mathematics of Long-Range Aperiodic Order, Ed.: R.V. Moody, Kluwer, Dordrecht 1997, p. 9
  • [8] D.H. Warrington, Mater. Sci. Forum 126-128, 57 (1993), doi: 10.4028/www.scientific.net/MSF.126-128.57
  • [9] D.H. Warrington, R. Lück, in Proc. Intl. Conf. on Aperiodic Crystals (Les Diablerets), Eds.: G. Chapuis, W. Paciorek, World Scientific, Singapore 1994, p. 30
  • [10] J.H. Conway, E.M. Rains, N.J.A. Sloane, Can. J. Math. 51, 1300 (1999), doi: 10.4153/CJM-1999-059-5
  • [11] M. Baake, U. Grimm, Z. Kristallogr. 219, 72 (2004), doi: 10.1524/zkri.219.2.72.26322
  • [12] M. Baake, M. Heuer, R.V. Moody, J. Algebra 320, 1391 (2008), doi: 10.1016/j.jalgebra.2008.04.021
  • [13] M. Baake, M. Heuer, U. Grimm, P. Zeiner, Europ. J. Combinatorics 29, 1808 (2008), doi: 10.1016/j.ejc.2008.01.012
  • [14] S. Glied, M. Baake, Z. Kristallogr. 223, 770 (2008), doi: 10.1524/zkri.2008.1054
  • [15] S. Glied, Can. Math. Bull. 55, 98 (2011), doi: 10.4153/CMB-2011-076-x
  • [16] P. Zeiner, Z. Kristallogr. 221, 105 (2006), doi: 10.1524/zkri.2006.221.2.105
  • [17] P. Zeiner, Z. Kristallogr. 220, 915 (2005), doi: 10.1524/zkri.2005.220.11_2005.915
  • [18] P. Zeiner, in preparation
Document Type
Publication order reference
YADDA identifier
bwmeta1.element.bwnjournal-article-appv126n254kz
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.