Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2014 | 126 | 2 | 633-636

Article title

Shape Limit in Triangular Spiral Tilings

Content

Title variants

Languages of publication

EN

Abstracts

EN
Phyllotaxis is the study of arrangements of leafs and florets. The topology of triangular spiral (multiple) tilings with opposed parastichy pairs is intimately related to the phyllotaxis theory and continued fractions. It is shown that, if the divergence angle of the genetic spiral is given as a quadratic irrational and fixed, then the limit set of the shape parameters of triangular tiles, as the parastichy numbers tend to infinity, is a finite set. In particular, the limit is the golden section if the divergence angle is `ultimately golden'.

Keywords

Contributors

author
  • Department of Applied Mathematics and Informatics, Ryukoku University, Seta, Otsu, 520-2194 Japan
author
  • Department of Applied Mathematics and Informatics, Ryukoku University, Seta, Otsu, 520-2194 Japan
author
  • Department of Applied Mathematics and Informatics, Ryukoku University, Seta, Otsu, 520-2194 Japan

References

  • [1] R.V. Jean, Phyllotaxis: a systemic study in plant morphogenesis, Cambridge University Press, 1994
  • [2] A.V. Shubnikov, Crystal Symmetries, Shubnikov Centennial Papers, Eds.: I. Hargittai, B.K. Vainshtein, Pergamon, Oxford 1988
  • [3] Symmetry in Plants, Eds.: R.V. Jean, D. Barabe, World Scientific, Singapore 1998
  • [4] I. Adler, Solving the riddle of phyllotaxis, why the Fibonacci numbers and the golden ratio occur on plants, World Scientific, Singapore 2012
  • [5] H.S.M. Coxeter, J. Algebra 20, 167 (1972), doi: 10.1016/0021-8693(72)90096-8
  • [6] N. Rivier, R. Occelli, J. Pantaloni, A. Lissowski, J. Phys. 45, 49 (1984), doi: 10.1051/jphys:0198400450104900
  • [7] L.S. Levitov, Phys. Rev. Lett. 66, 224 (1991), doi: 10.1103/PhysRevLett.66.224
  • [8] S. Douady, Y. Couder, J. Theor. Biol. 178, 255 (1996), doi: 10.1006/jtbi.1996.0024
  • [8a] S. Douady, Y. Couder, J. Theor. Biol. 178, 275 (1996), doi: 10.1006/jtbi.1996.0025
  • [8b] S. Douady, Y. Couder, J. Theor. Biol. 178, 295 (1996), doi: 10.1006/jtbi.1996.0026
  • [9] C. Nisoli, N.M. Gabor, P.E. Lammert, J.D. Maynard, V.H. Crespi, Phys. Rev. Lett. 102, 186103 (2009), doi: 10.1103/PhysRevLett.102.186103
  • [10] K. van Berkel, R.J. de Boer, B. Scheres, K. ten Tusscher, Development 140, 2253 (2013), doi: 10.1242/dev.079111
  • [11] F. Rothen, A.J. Koch, J. Phys. (France) 50, 633 (1989), doi: 10.1051/jphys:01989005006063300
  • [12] S. Hotton, V. Johnson, J. Wilbarger, K. Zwieniecki, P. Atela, C. Gole, J. Dumais, J. Plant Growth Regulation 25, 313 (2006), doi: 10.1007/s00344-006-0067-9
  • [13] P. Atela, Math. Model. Nat. Phenom. 6, 173 (2011), doi: 10.1051/mmnp/20116207
  • [14] T. Sushida, A. Hizume, Y. Yamagishi, J. Phys. A: Math. Theor. 45, 235203 (2012), (see also the cover page), doi: 10.1088/1751-8113/45/23/235203
  • [15] A. Hizume, Y. Yamagishi, J. Phys. A: Math. Theor. 44, 015202 (2011) (see also the cover page), doi: 10.1088/1751-8113/44/1/015202
  • [16] A.Ya. Khinchin, Continued fractions, The University of Chicago Press, Chicago 1964
  • [17] G.H. Hardy, E.M. Wright, An introduction to the theory of numbers, 6th ed., Oxford University Press, Oxford 2008

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv126n252kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.