Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2014 | 126 | 2 | 621-624

Article title

Aperiodicity in Equilibrium Systems: Between Order and Disorder

Authors

Content

Title variants

Languages of publication

EN

Abstracts

EN
Spatial aperiodicity occurs in various models and materials. Although today the most well-known examples occur in the area of quasicrystals, other applications might also be of interest. Here we discuss some issues related to the notion and occurrence of aperiodic order in equilibrium statistical mechanics. In particular, we consider some spectral characterisations, and shortly review what is known about the occurrence of aperiodic order in lattice models at zero and nonzero temperatures. At the end some more speculative connections to the theory of (spin-)glasses are indicated.

Keywords

EN

Contributors

author
  • Johann Bernoulli Institute for Mathematics and Computer Science, University of Groningen, P.O. Box 407, 9700 AK Groningen, The Netherlands

References

  • [1] M. Baake, U. Grimm, Aperiodic Order, Vol. 1, A Mathematical Invitation, Cambridge University Press, Cambridge 2013
  • [2] E. Schrödinger, What is Life? The Physical Aspect of the Living Cell, Cambridge University Press, Cambridge 1944
  • [3] J. Kurchan, 'Is it possible that there will be new developments (in glass and spin glass theory) starting from the theory of low-dimensional amorphous order, as in nonperiodic tilings? It is amazing how little attention the glass community has paid to lessons that could be learned from quasicrystals and in general non-periodic systems', in: Dynamical Heterogeneities in Glasses, Colloids and Granular Media, Eds. L. Berthier, G. Biroli, J.-P. Bouchaud, L. Cipelletti, W. van Saarloos, Oxford University Press, Oxford 2011, p. 9
  • [4] C.M. Newman, D.L. Stein, Spin Glasses and Complexity, Princeton Primers in Complex Systems, Princeton University Press, Princeton 2013
  • [5] S. Dworkin, J. Math. Phys. 34, 2965 (1993), doi: 10.1063/1.530108
  • [6] A.C.D. van Enter, J. Miękisz, J. Stat. Phys. 66, 1147 (1992), doi: 10.1007/BF01055722
  • [7] A. Hof, Commun. Math. Phys. 169, 25 (1995), doi: 10.1007/BF02101595
  • [8] H.-O. Georgii, Gibbs Measures and Phase Transitions, 2nd ed., Walter De Gruyter, Berlin 2011
  • [9] A.C.D. van Enter, R. Fernández, A.D. Sokal, J. Stat. Phys. 72, 879 (1993), doi: 10.1007/BF01048183
  • [10] M. Baake, D. Lenz, R.V. Moody, Ergodic Th. Dynam. Syst. 27, 341 (2007), doi: 10.1017/S0143385706000800
  • [11] J.-Y. Lee, R.V. Moody, B. Solomyak, Ann. Henri Poincaré 3, 1003 (2002), doi: 10.1007/s00023-002-8646-1
  • [12] M. Schlottmann, in: Directions in Mathematical Quasicrystals, Eds. M. Baake, R.V. Moody, CRM Monograph Series, Vol. 13, AMS, Providence (RI) 2000, p. 143
  • [13] M. Baake, D. Lenz, Ergodic Th. Dynam. Syst. 24, 1867 (2004), doi: 10.1017/S0143385704000318
  • [14] D. Lenz, N. Strungaru, J. Math. Pures Appl. 92, 323 (2009), doi: 10.1016/j.matpur.2009.05.013
  • [15] M. Baake, A.C.D. van Enter, J. Stat. Phys. 143, 88 (2011), doi: 10.1007/s10955-011-0163-5
  • [16] M. Baake, D. Lenz, A.C.D. van Enter, arXiv:1307.7518 (2013), to appear in Erg. Th. Dyn. Systems
  • [17] D. Schechtman, I. Blech, D. Gratias, J. Cahn, Phys. Rev. Lett. 53, 1951 (1984), doi: 10.1103/PhysRevLett.53.1951
  • [18] D. Ruelle, Physica A 113, 619 (1982), doi: 10.1016/0378-4371(82)90161-3
  • [19] D. Ruelle, J. Stat. Phys. 108, 723 (2002), doi: 10.1023/A:1019758523808
  • [20] S.I. Ben-Abraham, Z. Kristallogr. 222, 310 and 566 (2007), doi: 10.1524/zkri.2007.222.6.310
  • [21] M. Baake, M. Birkner, R.V. Moody, Commun. Math. Phys. 293, 611 (2009), doi: 10.1007/s00220-009-0942-x
  • [22] M. Baake, M. Höffe, J. Stat. Phys. 99, 219 (2000), doi: 10.1023/A:1018648707744
  • [23] M. Baake, B. Sing, Lett. Math. Phys. 68, 165 (2004), doi: 10.1023/B:MATH.0000045555.93532.6d
  • [24] M. Baake, N. Zint, J. Stat. Phys. 130, 727 (2008), doi: 10.1007/s10955-007-9445-3
  • [25] C. Külske, Probab. Th. Rel. Fields 126, 29 (2003), doi: 10.1007/s00440-003-0261-7
  • [26] C. Külske, Commun. Math. Phys. 239, 29 (2003), doi: 10.1007/s00220-003-0841-5
  • [27] S. Aubry, J. Phys. (Paris) 44, 147 (1983), doi: 10.1051/jphys:01983004402014700
  • [28] A.C.D. van Enter, J. Miękisz, Commun. Math. Phys. 134, 647 (1990), doi: 10.1007/BF02098451
  • [29] A.C.D. van Enter, J. Miękisz, M. Zahradník, J. Stat. Phys. 90, 1441 (1998), doi: 10.1023/A:1023299916107
  • [30] A.C.D. van Enter, B. Zegarlinski, J. Phys. A: Math. General 30, 501 (1997), doi: 10.1088/0305-4470/30/2/016
  • [31] C. Gardner, J. Miękisz, C. Radin, A. van Enter, J. Phys. A: Math. Gen. 22, L1019 (1989), doi: 10.1088/0305-4470/22/21/009
  • [32] J. Miękisz, J. Stat. Phys. 90, 285 (1998), doi: 10.1023/A:1023264004272
  • [33] J. Miękisz, J. Stat. Phys. 97, 835 (1999), doi: 10.1023/A:1004542115011
  • [34] J. Miękisz, J. Stat. Phys. 88, 691 (1997), doi: 10.1023/B:JOSS.0000015168.25151.22
  • [35] J. Miękisz, Quasicrystals-Microscopic Models of Nonperiodic Structures, Leuven Notes on Mathematical and Theoretical Physics, Leuven University Press, Leuven 1993
  • [36] C. Radin, Int. J. Mod. Phys. B 1, 1157 (1987), doi: 10.1142/S0217979287001675
  • [37] C. Radin, Rev. Math. Phys. 3, 125 (1991), doi: 10.1142/S0129055X91000059
  • [38] H. Bruin, R. Leplaideur, Commun. Math. Phys. 321, 209 (2013), doi: 10.1007/s00220-012-1651-4
  • [39] J. Slawny, in: Phase Transitions and Critical Phenomena, Vol. 11, Eds. C. Domb, J.L. Lebowitz, Academic Press, London 1987, p. 127
  • [40] D. Aristoff, C. Radin, J. Phys. A, Math. Gen. 44, 255001 (2011), doi: 10.1088/1751-8113/44/25/255001
  • [41] M. Baake, U. Grimm, Entropy 14, 856 (2012), doi: 10.3390/e14050856
  • [42] J. Kurchan, D. Levine, J. Phys. A, Math. Gen. 44, 035001 (2011), doi: 10.1088/1751-8113/44/3/035001
  • [43] A.C.D. van Enter, A. Hof, J. Miękisz, J. Phys. A 25, L1133 (1992), doi: 10.1088/0305-4470/25/18/007
  • [44] A.C.D. van Enter, E. de Groote, J. Stat. Phys. 142, 223 (2011), doi: 10.1007/s10955-010-0107-5
  • [45] D. Panchenko, The Sherrington-Kirkpatrick Model, Springer Monographs in Mathematics, Springer, New York 2013
  • [46] M. Talagrand, Spin Glasses: A Challenge for Mathematicians, Surveys in Mathematics, Vol. 46, Springer, New York 2003
  • [46a] M. Talagrand, Mean-Field Models for Spin Glasses, Surveys in Mathematics, Vols. 54 and 55, Springer, New York 2011
  • [47] L. Leuzzi, G. Parisi, J. Phys. A, Math. Gen. 33, 4215 (2000), doi: 10.1088/0305-4470/33/23/301
  • [48] D. Levine, G. Wolff, 'Ordered Glassy Spin System', arXiv:1302.5077 (2013)
  • [49] N. Nikola, D. Hexner, D. Levine, Phys. Rev. Lett. 110, 125701 (2013), doi: 10.1103/PhysRevLett.110.125701
  • [50] S. Sasa, J. Phys. A 45, 035002 (2012), doi: 10.1088/1751-8113/45/3/035002
  • [51] S. Sasa, Phys. Rev. Lett. 109, 165702 (2012), doi: 10.1103/PhysRevLett.109.165702

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv126n249kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.