Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2014 | 126 | 2 | 543-548

Article title

Inverse Hall-Petch Like Mechanical Behaviour in Nanophase Al-Cu-Fe Quasicrystals: A New Phenomenon

Content

Title variants

Languages of publication

EN

Abstracts

EN
The structural and mechanical stability of quasicrystals are important issues due to their potential for possible applications at high temperatures and stresses. The aim of the present work is, therefore, to review the earlier works on conventional crystalline and quasicrystalline materials and also to report the results and the analysis on the Hall-Petch and inverse Hall-Petch like behavior of nanoquasicrystalline Al_{62.5}Cu_{25}Fe_{12.5} alloys. It was observed that, at large grain sizes, the hardness increases with decreasing grain size, exhibiting the conventional Hall-Petch relationship, whereas for smaller grains, inverse Hall-Petch behavior was identified. The inverse Hall-Petch behavior in the nanoquasicrystalline phase could be attributed to thermally activated shearing of the grain boundaries, leading to grain boundary sliding in nanostructures of quasicrystalline grains. These results were analyzed based on the dislocation pile-up model as well as the grain boundary shearing models applicable to nanomaterials.

Keywords

EN

Year

Volume

126

Issue

2

Pages

543-548

Physical description

Dates

published
2014-08

Contributors

  • Department of Metallurgical Engineering, Indian Institute of Technology (BHU), Varanasi 221 005, India
author
  • Pakistan Institute of Engineering & Applied Science, P.O. Nilore, Islamabad, Pakistan
author
  • IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany
  • IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany
author
  • IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany
author
  • Metal Extraction & Forming Division, National Metallurgical Laboratory, Jamshedpur-831007, India
  • Institut für Werkstofftechnik, Universität Bremen, Badgasteiner Str. 3, D-28359 Bremen, Germany
author
  • European Synchrotron Radiation Facilities ESRF, BP 220, 38043 Grenoble, France
  • Dept. of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL. 32816-2450, U.S.A.
author
  • IFW Dresden, Institut für Komplexe Materialien, Postfach 27 01 16, D-01171 Dresden, Germany
  • TU Dresden, Institut für Werkstoffwissenschaft, D-01062 Dresden, Germany

References

  • [1] E.O. Hall, Proc. Phys. Soc. (Lond.) 64, 747 (1951), doi: 10.1088/0370-1301/64/9/303
  • [2] N.J. Petch, J. Iron Steel Inst. 174, 25 (1953)
  • [3] R.W. Armstrong, Yield, flow and fracture of polycrystals, Ed. T.N. Baker, Applied Science Publishers, London 1983, p. 1
  • [4] A. Lasalmonie, J.L. Strudel, J. Mater. Sci. 21, 1837 (1986), doi: 10.1007/BF00547918
  • [5] N.K. Mukhopadhyay, P. Paufler, Int. Mater. Rev. 51, 209 (2006), doi: 10.1179/174328006X102475
  • [6] H.W. Song, S.R. Guo, Z.Q. Hu, Nanostruct. Mater. 11, 203 (1999), doi: 10.1016/S0965-9773(99)00033-1
  • [7] C.C. Koch, J. Narayan, Mater. Res. Soc. Symp. Proc. 634, B5.1.1 (2001), doi: 10.1557/PROC-634-B5.1.1
  • [8] C. Suryanarayana, Int. Mater. Rev. 40, 41 (1995)
  • [9] C. S. Pande, K.P. Cooper, Prog. Mater. Sci. 54, 689 (2009), doi: 10.1016/j.pmatsci.2009.03.008
  • [10] H. Chang, C.J. Altstetter, R.S. Averback, J. Mater. Res. 7, 2962 (1992), doi: 10.1557/JMR.1992.2962
  • [11] U. Erb, Nanostruct. Mater. 6, 533 (1995), doi: 10.1016/0965-9773(95)00114-X
  • [12] J. Karch, R. Birringer, H. Gleiter, Nature 330, 556 1987), doi: 10.1038/330556a0
  • [13] S.Y. Chang, T.K. Chang, J. Appl. Phys. 101, 033507 (2007), doi: 10.1063/1.2432873
  • [14] D. Jang, M. Atzmon, J. Appl. Phys. 93, 9282 (2003), doi: 10.1063/1.1569035
  • [15] R.W. Siegel, Mater. Sci. Forum 235-238, 851 (1997), doi: 10.4028/www.scientific.net/MSF.235-238.851
  • [16] C. Suryanarayana, D. Mukhopadhyay, S.N. Patankar, F.H. Froes, J. Mater. Res. 7, 2114 (1992), doi: 10.1557/JMR.1992.2114
  • [17] F.A. Mohamed, Metall. Mater. Trans. 38A, 340 (2007), doi: 10.1007/s11661-006-9057-6
  • [18] C. Suryanarayana, Mater. Today 15, 486 (2012), doi: 10.1016/S1369-7021(12)70218-3
  • [19] M.A. Meyers, A. Mishra, D.J. Benson, Prog. Mater. Sci. 51, 427 (2006), doi: 10.1016/j.pmatsci.2005.08.003
  • [20] H. Conrad, J. Narayan, Scri. Mater. 42, 1025 (2000), doi: 10.1016/S1359-6462(00)00320-1
  • [21] H. Conrad, J. Narayan, Appl. Phys. Lett. 81, 2241 (2002), doi: 10.1063/1.1507353
  • [22] H. Conrad, J. Narayan, Acta Mater. 50, 5067 (2002), doi: 10.1016/S1359-6454(02)00357-9
  • [23] C. Suryanarayana, C.C. Koch, Hyperfine Interact. 130, 5, (2000), doi: 10.1023/A:1011026900989
  • [24] H. Gleiter, Prog. Mater. Sci. 33, 223 (1989), doi: 10.1016/0079-6425(89)90001-7
  • [25] K.A. Padmanabhan, G.P. Dinda, H. Hahn, H. Gleiter, Mater. Sci. & Eng. A 452-453, 462 (2007), doi: 10.1016/j.msea.2006.10.084
  • [26] P. P. Chattopadhyay, S.K. Pabi, I. Manna, Z. Metallkd. 91, 1049 (2000)
  • [27] E.H. Saarivirta, J. Alloys Comp. 363, 154-178 (2004), doi: 10.1016/S0925-8388(03)00445-6
  • [28] N.K. Mukhopadhyay, T.P. Yadav, Isr. J. Chem. 51, 1185 (2011), doi: 10.1002/ijch.201100145
  • [29] C. Suryanarayana, Mechanical Alloying and Milling, Marcel Dekker, New York 2004
  • [30] C. Suryanarayana, Prog. Mater. Sci. 46, 1 (2001), doi: 10.1016/S0079-6425(99)00010-9
  • [31] M. Feuerbacher, C. Metzmacher, M. Wollgarten, K. Urban, B. Baufeld, M. Bartsch, U. Messerschmidt, Mater. Sci. Engg A 226-228, 943 (1997), doi: 10.1016/S0921-5093(97)80097-4
  • [32] V. Azhazha, S. Dub, G. Khadzhay, B. Merisov, S. Malkin, A. Pugachov, Philos. Mag. 84, 983 (2004), doi: 10.1080/14786430310001641975
  • [33] N.K. Mukhopadhyay, A. Belger, P. Paufler, P. Gille, Philos. Mag. 86, 999 (2006), doi: 10.1080/14786430500276985
  • [34] N.K. Mukhopadhyay, A. Belger, P. Paufler, E. Uhrig, S. Bruhne, W. Assmus, J. Alloys & Comp. 466, 160 (2008), doi: 10.1016/j.jallcom.2007.11.084
  • [35] M. Abu Shaz, N.K. Mukhopadhyay, R.K. Mandal, O.N. Srivastava, J. All. Comp. 342, 49 (2002), doi: 10.1016/S0925-8388(02)00132-9
  • [36] N.K. Mukhopadhyay, A. Belger, P. Paufler, D.H. Kim, Mater. Sci. & Eng. A 449-451, 954 (2007), doi: 10.1016/j.msea.2006.02.258
  • [37] M. Reibold, A. Belger, N.K. Mukhopadhyay, P. Gille, P. Paufler, Phys. Stat. Sol. 202, 2267 (2005), doi: 10.1002/pssa.200521040
  • [38] S.S. Kang, J.M. Dubois, Europhys. Lett. 18, 45 (1992), doi: 10.1209/0295-5075/18/1/009
  • [39] S.H. Kim, K. Chattopadhyay, B.J. Inkson, G. Mobus, W.T. Kim, D.H. Kim, J. Mater. Sci. 41, 6081 (2006), doi: 10.1007/s10853-006-0668-5
  • [40] N.K. Mukhopadhyay, F. Ali, S. Scudino, M. Samadi Khoshkhoo, M. Stoica, V.C. Srivastava, V. Uhlenwinkel, G. Vaughan, C. Suryanarayana, J. Eckert, Appl. Phys. Lett. 103, 201914 (2013), doi: 10.1063/1.4831737
  • [41] V.C Srivastava, V. Uhlenwinkel, A. Schultz, H.W. Zoch, N.K. Mukhopadhyay, S.G. Chowdhury, Z. Kristallogr. 223, 211 (2008), doi: 10.1524/zkri.2008.1032
  • [42] N.K. Mukhopadhyay, F. Ali, V.C. Srivastava, T.P. Yadav, M. Sakaliyska, K.B. Surreddi, S. Scudino, V. Uhlenwinkel, J. Eckert, Philos. Mag. 91, 2482 (2011), doi: 10.1080/14786435.2010.536178
  • [43] F. Ali, S. Scudino, S.M. Gorantla, V.C. Srivastava, H.R. Shahid, V. Uhlenwinkel, M. Stoica, G. Vaughan, N.K. Mukhopadhyay, J. Eckert, Acta Mater. 61, 3819 (2013), doi: 10.1016/j.actamat.2013.03.020
  • [44] N.K. Mukhopadhyay, S. Ranganathan, K. Chattopadhyay, Philos. Mag. Lett. 60, 207 (1989), doi: 10.1080/09500838908206459
  • [45] T.G. Nieh, J. Wadsworth, Scr. Metall. Mater. 25, 955 (1991), doi: 10.1016/0956-716X(91)90256-Z
  • [46] J. Schiotz Jakob, F.D. Di Tolla, K.W. Jacobsen, Nature 39, 561 (1998), doi: 10.1038/35328

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv126n230kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.