Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2014 | 126 | 2 | 539-542

Article title

On a Family of Random Noble Means Substitutions

Authors

Content

Title variants

Languages of publication

EN

Abstracts

EN
In 1989, Godrèche and Luck introduced the concept of local mixtures of primitive substitution rules along the example of the well-known Fibonacci substitution and foreshadowed heuristic results on the topological entropy and the spectral type of the diffraction measure of associated point sets. In this contribution, we present a generalisation of this concept by regarding the so-called "noble means families", each consisting of finitely many primitive substitution rules that individually all define the same two-sided discrete dynamical hull. We report about results in the randomised case on topological entropy, ergodicity of the two-sided discrete hull, and the spectral type of the diffraction measure of related point sets.

Keywords

EN

Contributors

author
  • Fakultät für Mathematik, Universität Bielefeld, Universitätsstraÿe 25, D-33615 Bielefeld, Germany

References

  • [1] C. Godrèche, J.M. Luck, J. Stat. Phys. 55, 1 (1989), doi: 10.1007/BF01042590
  • [2] M. Baake, U. Grimm, Aperiodic Order, Vol. 1, A Mathematical Invitation, Cambridge University Press, Cambridge 2013
  • [3] J. Nilsson, Monatsh. Math. 166, 1 (2012), doi: 10.1007/s00605-012-0401-1
  • [4] M. Queffélec, Substitution Dynamical Systems - Spectral Analysis, 2nd ed., LNM 1294, Springer, Berlin 2010, doi: 10.1007/978-3-642-11212-6
  • [5] M. Moll, Ph.D. Thesis, University of Bielefeld, 2013. http://pub.uni-bielefeld.de/publication/2637807
  • [6] M. Baake, M. Moll, in: Aperiodic Crystals, Eds. S. Schmid, R.L. Withers, R. Lifshitz, Springer, Dordrecht 2013, p. 19, doi: 10.1007/978-94-007-6431-6
  • [7] N. Etemadi, Z. Wahrscheinlichkeitsth. verw. Geb. 55, 119 (1981), doi: 10.1007/BF01013465
  • [8] R.V. Moody, in: The Mathematics of Long-Range Aperiodic Order, Ed. R.V. Moody, NATO ASI Series C 489, Kluwer, Dordrecht 1997, p. 403
  • [9] N. Strungaru, Can. J. Math. 65, 675 (2013), doi: 10.4153/CJM-2012-032-1
  • [10] M. Baake, D. Lenz, C. Richard, Lett. Math. Phys. 82, 61 (2007), doi: 10.1007/s11005-007-0186-7
  • [11] I.P. Cornfeld, S.V. Fomin, Y.G. Sinai, Ergodic Theory, Springer, New York 1982, doi: 10.1007/978-1-4615-6927-5
  • [12] M. Einsiedler, T. Ward, Ergodic Theory: With a View towards Number Theory, Springer, London (2011), doi: 10.1007/978-0-85729-021-2

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv126n229kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.