PL EN


Preferences help
enabled [disable] Abstract
Number of results
2014 | 126 | 2 | 531-534
Article title

Theoretical Foundation for the Hume-Rothery Electron Concentration Rule for Structurally Complex Alloys

Content
Title variants
Languages of publication
EN
Abstracts
EN
An electron concentration parameter, expressed as the number of itinerant electrons per number of atoms N in a structural unit cell of an alloy, e/uc, is a useful parameter that can be used in interpreting the origin of a band structure pseudogap often evident at the Fermi level for structurally complex metallic alloy phases. It can be expressed in terms of the interference condition e/uc=π/3[|G|_{c}^2]^{3/2}, where |G|_{c}^2 is the square of the critical reciprocal lattice vector associated with the specific set of lattice planes interfering with electrons at the Fermi level. This parameter is similar to the well-known Hume-Rothery electron concentration parameter e/a, which represents the number of electrons per atom and is linked with e/uc through the relation e/uc = N(e/a). We have demonstrated that certain complex metallic alloy structures appear to be stable at or near certain values of e/a. We show that the e/a=1.60 rule holds for the sub-group of gamma-brasses with space group I4̅3m and Pearson symbol cI52, the e/a=4.34 rule for skutterudite compounds with Im3̅ and cI32, the e/a=2.74 rule for Al_6TM (TM = Mn, Tc, Re, Fe, and Ru) compounds with Cmcm and oC28, the e/a=1.62 rule for the sub-group of the Heusler compounds with Fm3̅m and cF16, and the e/a=2.09 rule for the sub-group of Zintl compounds MX_1 (M = Li and Na, X_1 = Al, Ga, In, and Tl) with Fd3̅m and cF32. The e/a rule holds in sub-groups of isostructural compounds, regardless of the degree of orbital hybridizations and the polarity involved.
Keywords
EN
Contributors
author
  • Nagoya Industrial Science Research Institute, 1-13 Yotsuya-dori, Chikusa-ku, Nagoya, 464-0819, Japan
author
  • Aichi University of Education, Kariya-shi, Aichi, 448-8542, Japan
author
  • Nagoya Institute of Technology, Department of Frontier Materials, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
author
  • Theoretical Physics, University of Kassel, 34132 Kassel, Germany
References
  • [1] U. Mizutani, Hume-Rothery Rules for Structurally Complex Alloy Phases, CRC Press Taylor &Francis Group, Boca Raton 2010
  • [2] A.P. Tsai, A. Inoue, T. Masumoto, Jpn. J. Appl. Phys. 27, L1587 (1988), doi: 10.1143/JJAP.29.L1161
  • [3] A.P. Tsai, A. Inoue, Y. Yokoyama, T. Masumoto, Mater. Trans. Jpn. Inst. Met. 31, 98 (1990)
  • [4] Y. Yokoyama, A.P. Tsai, A. Inoue, T. Masumoto, H.S. Chen, Mater. Trans. Jpn. Inst. Met. 32, 421 (1991)
  • [5] G.V. Raynor, Prog. Met. Phys. 1, 1 (1949)
  • [6] M. Inukai, E.S. Zijlstra, H. Sato, U. Mizutani, Philos. Mag. 91, 4247 (2011), doi: 10.1080/14786435.2011.604357
  • [7] U. Mizutani, M. Inukai, H. Sato, E.S. Zijlstra, Philos. Mag. 92, 1691 (2012), doi: 10.1080/14786435.2012.657711
  • [8] U. Mizutani, M. Inukai, H. Sato, E.S. Zijlstra, Chem. Soc. Rev. 41, 6799 (2012), doi: 10.1039/C2CS35161G
  • [9] H. Sato, M. Inukai, E.S. Zijlstra, U. Mizutani, Philos. Mag. 93, 3029 (2013), doi: 10.1080/14786435.2013.793855
  • [10] U. Mizutani, H. Sato, M. Inukai, E.S. Zijlstra, Philos. Mag. 93, 3353 (2013), doi: 10.1080/14786435.2013.805276
  • [11] U. Mizutani, M. Inukai, H. Sato, E.S. Zijlstra, in: Physical Metallurgy 5th ed., Eds. K. Hono, D. Laughlin, Elsevier, Amsterdam 2013, p. 1.02
  • [12] P. Blaha, K. Schwarz, G. Madsen, D. Kvasnicka, J. Luitz, http://www.wien2k.at WIEN2k, (last accessed on August 30, 2013)
  • [13] P. Villars, Pearson's Handbook, Crystallographic Data, ASM, Materials Park, OH 1997
  • [14] U. Mizutani, H. Sato, M. Inukai, E.S. Zijlstra, Q. Lin, J.D. Corbett, G.J. Miller, Acta Phys. Pol. A 126, 535 (2014), doi: 10.12693//APhysPolA.126.535
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv126n227kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.