PL EN


Preferences help
enabled [disable] Abstract
Number of results
2014 | 126 | 2 | 516-519
Article title

Coincidences of a Shifted Hexagonal Lattice and the Hexagonal Packing

Content
Title variants
Languages of publication
EN
Abstracts
EN
A geometric study of twin and grain boundaries in crystals and quasicrystals is achieved via coincidence site lattices and coincidence site modules, respectively. Recently, coincidences of shifted lattices and multilattices (i.e. finite unions of shifted copies of a lattice) have been investigated. Here, we solve the coincidence problem for a shifted hexagonal lattice. This result allows us to analyze the coincidence isometries of the hexagonal packing by viewing the hexagonal packing as a multilattice.
Keywords
EN
Publisher

Year
Volume
126
Issue
2
Pages
516-519
Physical description
Dates
published
2014-08
Contributors
author
  • Institute of Mathematics, University of the Philippines Diliman, C.P. Garcia St., UP Campus Diliman, 1101 Quezon City, Philippines
author
  • Institute of Mathematics, University of the Philippines Diliman, C.P. Garcia St., UP Campus Diliman, 1101 Quezon City, Philippines
author
  • Institute of Mathematics, University of the Philippines Diliman, C.P. Garcia St., UP Campus Diliman, 1101 Quezon City, Philippines
References
  • [1] W. Bollmann, Crystal Defects and Crystalline Interfaces, Springer, Berlin 1970, doi: 10.1007/978-3-642-49173-3
  • [2] H. Grimmer, W. Bollmann, D.H. Warrington, Acta Crystallogr. A 30, 197 (1974), doi: 10.1107/S056773947400043X
  • [3] D.H. Warrington, Mater. Sci. Forum 126-128, 57 (1993), doi: 10.4028/www.scientific.net/MSF.126-128.57
  • [4] M. Baake, in: The Mathematics of Long-Range Aperiodic Order, (rev. version) Ed. R.V. Moody, Kluwer, Dordrecht 1997, p. 9 http://arxiv.org/abs/math/0605222
  • [5] M.J.C. Loquias, P. Zeiner, J. Phys., Conf. Ser. 226, 012026 (2010), doi: 10.1088/1742-6596/226/1/012026
  • [6] M.J.C. Loquias, P. Zeiner, preprint. http://arxiv.org/abs/1301.3689
  • [7] M. Pitteri, G. Zanzotto, Acta Crystallogr. A 54, 359 (1998), doi: 10.1107/S010876739701667X
  • [8] G.H. Hardy, E.M. Wright, An Introduction to the Theory of Numbers, 6th ed., Oxford University Press, Oxford 2008
  • [9] P.A.B. Pleasants, M. Baake, J. Roth, J. Math. Phys. 37, 1029 (1996), doi: 10.1063/1.531424
  • [10] M. Baake, U. Grimm, Z. Kristallogr. 221, 571 (2006), doi: 10.1524/zkri.2006.221.8.571
  • [11] E.D. Gabinete, M.Sc. Thesis, University of the Philippines Diliman, Quezon City 2013
  • [12] J.C.H. Arias, M.J.C. Loquias, in preparation
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv126n223kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.