As of 1 April 2026, the PSJD database will become an archive and will no longer accept new data. Current publications from Polish scientific journals are available through the Library of Science: https://bibliotekanauki.pl
A brief summary of recent developments in mathematical diffraction theory is given. Particular emphasis is placed on systems with aperiodic order and continuous spectral components. We restrict ourselves to some key results and refer to the literature for further details.
[3] M. Baake, D. Lenz, A.C.D. van Enter, arXiv:1307.7518, Erg. Th. & Dyn. Syst., in press
[4] R.L. Withers, Z. Kristallogr. 220, 1027 (2005), doi: 10.1524/zkri.2005.220.12.1027
[5] M. Baake, U. Grimm, Z. Kristallogr. 226, 711 (2011), doi: 10.1524/zkri.2011.1389
[6] M. Baake, U. Grimm, Chem. Soc. Rev. 41, 6821 (2012), doi: 10.1039/C2CS35120
[7] M. Baake, U. Grimm, Aperiodic Order, Vol. 1, Cambridge University Press, Cambridge 2013
[8] S. Kakutani, in: Proc. 6th Berkeley Symp. on Math. Statistics, and Probability, Eds.: L.M. LeCam, J. Neyman, E.L. Scott, Univ. of California Press, Berkeley 1972, p. 319
[9] M. Queffélec, Substitution Dynamical Systems - Spectral Analysis, LNM 1294, 2nd ed., Springer, Berlin 2010
[10] A.C.D. van Enter, J. Miękisz, J. Stat. Phys. 66, 1147 (1992), doi: 10.1007/BF01055722
[11] M. Baake, F. Gähler, U. Grimm, J. Math. Phys. 53, 032701 (2012), doi: 10.1063/1.3688337
[12] M. Baake, U. Grimm, J. Phys. A: Math. Theor. 41, 422001 (2008), doi: 10.1088/1751-8113/41/42/422001
[13] M. Baake, U. Grimm, J. Nilsson, Acta Phys. Pol. A 126, 431 (2014), doi: http://dx.doi.org/10.12693/APhysPolA.126.431