Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2014 | 126 | 2 | 467-470

Article title

Electric-Elastic Field Induced by a Straight Dislocation in One-Dimensional Quasicrystals

Content

Title variants

Languages of publication

EN

Abstracts

EN
By using the generalized Stroh formalism, the electric-elastic field induced by a straight dislocation parallel to a periodic axis of a one-dimensional quasicrystal is obtained. The derivation is concise and the solution is in an exact closed form. As an illustration, the electric-elastic fields around a straight dislocation in a one-dimensional hexagonal quasicrystal are studied. Besides the interesting numerical results presented, the generalized Stroh formalism can be applied to more complicated dislocation problems in quasicrystals.

Keywords

EN

Contributors

author
  • College of Science, China Agricultural University, Beijing 100083, China
  • College of Engineering, China Agricultural University, Beijing 100083, China
author
  • College of Science, China Agricultural University, Beijing 100083, China
author
  • Department of Civil Engineering, University of Akron, Akron, OH 44325-3905, USA
author
  • Department of Civil Engineering, University of Akron, Akron, OH 44325-3905, USA

References

  • [1] D. Shechtman, I. Blech, D. Gratias, J.W. Cahn, Phys. Rev. Lett. 53, 1951 (1984), doi: 10.1103/PhysRevLett.53.1951
  • [2] D.H. Ding, W.G. Yang, C.Z. Hu, R.H. Wang, Phys. Rev. B 48, 7003 (1993), doi: 10.1103/PhysRevB.48.7003
  • [3] C.L. Lian, Y.Y. Liu, Chin. Phys. 13, 924 (2004), doi: 10.1088/1009-1963/13/6/024
  • [4] C.Z. Hu, R.H. Wang, D.H. Ding, Rep. Prog. Phys. 63, 1 (2000), doi: 10.1088/0034-4885/63/1/201
  • [5] D.H. Ding, R.H. Wang, W.G. Yang, C.Z. Hu, J. Phys., Condens. Matter 7, 5423 (1995), doi: 10.1088/0953-8984/7/28/003
  • [6] D.H. Ding, R.H. Wang, W.G. Yang, C.Z. Hu, Y.L. Qin, Philos. Mag. 72, 353 (1995), doi: 10.1080/09500839508242474
  • [7] Y.L. Qin, R H. Wang, D.H. Ding, J.L. Lei, J. Phys., Condens. Matter 9, 859 (1997), doi: 10.1088/0953-8984/9/4/006
  • [8] X.F. Li, X.Y. Duan, T.Y. Fan, Y.F. Sun, J. Phys., Condens. Matter 11, 703 (1999), doi: 10.1088/0953-8984/11/3/009
  • [9] E. Pan, J. Appl. Mech. 68, 608 (2001), doi: 10.1115/1.1380385
  • [10] A.N. Stroh, Philos. Mag. 3, 625 (1958), doi: 10.1080/14786435808565804
  • [11] A.N. Stroh, J. Math. Phys. 41, 77 (1962)
  • [12] T.C.T. Ting, Anisotropic Elasticity. Theory and Applications, Oxford University Press, New York 1996
  • [13] C. Hwu, Anisotropic Elastic Plates, Springer, New York 2010
  • [14] T.Y. Fan, Engineering 5, 407 (2013), doi: 10.4236/eng.2013.54053
  • [15] J.S. Lee, L.Z. Jiang, Int. J. Solids Struct. 33, 977 (1996), doi: 10.1016/0020-7683(95)00083-6

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv126n210kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.