Journal
Article title
Authors
Title variants
Languages of publication
Abstracts
By using the generalized Stroh formalism, the electric-elastic field induced by a straight dislocation parallel to a periodic axis of a one-dimensional quasicrystal is obtained. The derivation is concise and the solution is in an exact closed form. As an illustration, the electric-elastic fields around a straight dislocation in a one-dimensional hexagonal quasicrystal are studied. Besides the interesting numerical results presented, the generalized Stroh formalism can be applied to more complicated dislocation problems in quasicrystals.
Discipline
Journal
Year
Volume
Issue
Pages
467-470
Physical description
Dates
published
2014-08
Contributors
author
- College of Science, China Agricultural University, Beijing 100083, China
- College of Engineering, China Agricultural University, Beijing 100083, China
author
- College of Science, China Agricultural University, Beijing 100083, China
author
- Department of Civil Engineering, University of Akron, Akron, OH 44325-3905, USA
author
- Department of Civil Engineering, University of Akron, Akron, OH 44325-3905, USA
References
- [1] D. Shechtman, I. Blech, D. Gratias, J.W. Cahn, Phys. Rev. Lett. 53, 1951 (1984), doi: 10.1103/PhysRevLett.53.1951
- [2] D.H. Ding, W.G. Yang, C.Z. Hu, R.H. Wang, Phys. Rev. B 48, 7003 (1993), doi: 10.1103/PhysRevB.48.7003
- [3] C.L. Lian, Y.Y. Liu, Chin. Phys. 13, 924 (2004), doi: 10.1088/1009-1963/13/6/024
- [4] C.Z. Hu, R.H. Wang, D.H. Ding, Rep. Prog. Phys. 63, 1 (2000), doi: 10.1088/0034-4885/63/1/201
- [5] D.H. Ding, R.H. Wang, W.G. Yang, C.Z. Hu, J. Phys., Condens. Matter 7, 5423 (1995), doi: 10.1088/0953-8984/7/28/003
- [6] D.H. Ding, R.H. Wang, W.G. Yang, C.Z. Hu, Y.L. Qin, Philos. Mag. 72, 353 (1995), doi: 10.1080/09500839508242474
- [7] Y.L. Qin, R H. Wang, D.H. Ding, J.L. Lei, J. Phys., Condens. Matter 9, 859 (1997), doi: 10.1088/0953-8984/9/4/006
- [8] X.F. Li, X.Y. Duan, T.Y. Fan, Y.F. Sun, J. Phys., Condens. Matter 11, 703 (1999), doi: 10.1088/0953-8984/11/3/009
- [9] E. Pan, J. Appl. Mech. 68, 608 (2001), doi: 10.1115/1.1380385
- [10] A.N. Stroh, Philos. Mag. 3, 625 (1958), doi: 10.1080/14786435808565804
- [11] A.N. Stroh, J. Math. Phys. 41, 77 (1962)
- [12] T.C.T. Ting, Anisotropic Elasticity. Theory and Applications, Oxford University Press, New York 1996
- [13] C. Hwu, Anisotropic Elastic Plates, Springer, New York 2010
- [14] T.Y. Fan, Engineering 5, 407 (2013), doi: 10.4236/eng.2013.54053
- [15] J.S. Lee, L.Z. Jiang, Int. J. Solids Struct. 33, 977 (1996), doi: 10.1016/0020-7683(95)00083-6
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv126n210kz