Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2014 | 126 | 2 | 446-448

Article title

Compositions of Al-Based Quasicrystals Interpreted by Cluster Formulae

Content

Title variants

Languages of publication

EN

Abstracts

EN
It is known previously that bulk metallic glass compositions satisfy cluster formulae [cluster](glue atom)_{1, 3} of 24 valence electrons as deduced from our cluster-resonance model. In the present work, it is further shown that compositions of Al-based binary and ternary quasicrystals are also explained by 24-electron cluster formulae of the types [icosahedron](glue atom)_{0, 1}, where the icosahedral cluster is identified from a corresponding crystalline approximant according to dense atomic packing and cluster isolation criteria, and the glue atom site is either vacant for an icosahedral quasicrystal or equal to one for a decagonal quasicrystal. Ternary quasicrystals are formulated with the same formulae as their basic binary ones but the icosahedron shell sites are substituted by third elements. The 24-electron cluster formulae are then the chemical and electronic structural units of quasicrystals, mimicking the molecular formulae of chemical substances.

Keywords

EN

Contributors

author
  • Key Laboratory of Materials Modification (Ministry of Education), Dalian University of Technology, Dalian 116024, China
author
  • Key Laboratory of Materials Modification (Ministry of Education), Dalian University of Technology, Dalian 116024, China
author
  • Key Laboratory of Materials Modification (Ministry of Education), Dalian University of Technology, Dalian 116024, China
author
  • Key Laboratory of Materials Modification (Ministry of Education), Dalian University of Technology, Dalian 116024, China

References

  • [1] A.L. Mackay, J.L. Finney, J. Appl. Crystallogr. 6, 284 (1973), doi: 10.1107/S0021889873008691
  • [2] C. Dong, Q. Wang, J.B. Qiang, Y.M. Wang, N. Jiang, G. Han, Y.H. Li, J. Wu, J.H. Xia, J. Phys. D, Appl. Phys. 40, R273 (2007), doi: 10.1088/0022-3727/40/15/R01
  • [3] J.X. Chen, Q. Wang, Y.M. Wang, J.B. Qiang, C. Dong, Philos. Mag. Lett. 90, 683 (2010), doi: 10.1080/09500839.2010.495356
  • [4] D.B. Miracle, W.S. Sanders, O.N. Senkov, Philos. Mag. 83, 2409 (2003), doi: 10.1080/1478643031000098828
  • [5] Q. Wang, C. Dong, J.B. Qiang, Y.M. Wang, Mater. Sci. Eng. A 449, 18 (2007), doi: 10.1016/j.msea.2006.02.271
  • [6] H. Chen, J.B. Qiang, Q. Wang, Y.M. Wang, C. Dong, Isr. J. Chem. 51, 1226 (2011), doi: 10.1002/ijch.201100139
  • [7] S. Song, E.R. Ryba, Philos. Mag. Lett. 65, 85 (1992), doi: 10.1080/09500839208207519
  • [8] G. Han, J.B. Qiang, F.W. Li, L. Yuan, S.G. Quan, Q. Wang, Y.M. Wang, C. Dong, P. Häussler, Acta Mater. 59, 5917 (2011), doi: 10.1016/j.actamat.2011.05.065
  • [9] M. Stiehler, J. Rauchhaupt, U. Giegengack, P. Häussler, J. Non-Cryst. Solids 353, 1886 (2007), doi: 10.1016/j.jnoncrysol.2007.01.052
  • [10] D. Shechtman, I.A. Blech, Metall. Trans. A 16, 1005 (1985), doi: 10.1007/BF02811670
  • [11] P.W. Stephens, A.I. Goldman, Phys. Rev. Lett. 56, 1168 (1986), doi: 10.1103/PhysRevLett.56.1168
  • [12] O.N. Senkov, D.B. Miracle, V. Keppens, P.K. Liaw, Metall. Mater. Trans. A 39, 1888 (2008), doi: 10.1007/s11661-007-9334-z
  • [13] S. Taniguchi, E. Abe, Philos. Mag. 88, 1949 (2008), doi: 10.1080/14786430802035683
  • [14] N.K. Mukhopadhyay, G.C. Weatherly, J.D. Embury, Mater. Sci. Eng. A 315, 202 (2001), doi: 10.1016/S0921-5093(01)01186-8
  • [15] J. Guo, E. Abe, T. Sato, A.P. Tsai, Jpn. J. Appl. Phys. 38, L1049 (1999), doi: 10.1143/JJAP.38.L1049
  • [16] A.P. Tsai, A. Inoues, Y. Yokoyama, T. Masumoto, Philos. Mag. Lett. 61, 9 (1990), doi: 10.1080/09500839008206473

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv126n205kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.