PL EN


Preferences help
enabled [disable] Abstract
Number of results
2014 | 126 | 1 | 344-345
Article title

Thermodynamic Critical Magnetic Field for Chlorine Halide Superconductor at High Pressure

Content
Title variants
Languages of publication
EN
Abstracts
EN
At present, hydrides are considered as a one of the most interesting high-temperature superconductors with the classical electron-phonon pairing mechanism. In the present paper, we have analyzed the dependence of the thermodynamic critical magnetic field (H_c) on the temperature for the chlorine halide superconductor. The calculations have been made in the framework of the Eliashberg formalism for the following pressure values: p_{1}=320 GPa and p_{2}=360 GPa. We have shown that H_c increases strongly with the increase of the pressure: [H_c(0)]_{p_{2}}/[H_c(0)]_{p_{1}}= 1.43. Furthermore, the dimensionless ratio: R_{H} ≡ T_cC^{N}(T_c)/H_c^{2}(0), where T_c and C^{N} denote the critical temperature and the specific heat of the normal state, differs from the value predicted by the Bardeen-Cooper-Schrieffer theory. In particular: [R_{H}]_{p_{1}}=0.166 and [R_{H}]_{p_{2}}=0.158.
Keywords
EN
Publisher

Year
Volume
126
Issue
1
Pages
344-345
Physical description
Dates
published
2014-07
Contributors
  • Institute of Physics, Jan Długosz University in Częstochowa, al. Armii Krajowej 13/15, 42-200 Częstochowa, Poland
  • Institute of Physics, Częstochowa University of Technology, al. Armii Krajowej 19, 42-200 Częstochowa, Poland
References
  • [1] R. Szczęśniak, A.P. Durajski, arXiv/1206.5531
  • [2] R. Szczęśniak, A.P. Durajski, Solid State Commun. 153, 26 (2013), doi: 10.1016/j.ssc.2012.10.015
  • [3] M. Stadele, R.M. Martin, Phys. Rev. Lett. 84, 6070 (2000), doi: 10.1103/PhysRevLett.84.6070
  • [4] N.W. Ashcroft, Phys. Rev. Lett. 92, 187002 (2004), doi: 10.1103/PhysRevLett.92.187002
  • [5] R. Szczęśniak, A.P. Durajski, J. Phys. Chem. Solids 74, 641 (2013), doi: 10.1016/j.jpcs.2012.12.024
  • [6] L. Gao, Y.Y. Xue, F. Chen, Q. Xiong, R.L. Meng, D. Ramirez, C.W. Chu, J.H. Eggert, H.K. Mao, Phys. Rev. B 50, 4260 (1994), doi: 10.1103/PhysRevB.50.4260
  • [7] D. Duan, F. Tian, Z. He, X. Meng, L. Wang, C. Chen, X. Zhao, B. Liu, T. Cui, J. Chem. Phys. 133, 074509 (2010), doi: 10.1063/1.3471446
  • [8] M. Cyrot, D. Pavuna, Introduction to Superconductivity and High-T$_c$ Materials , World Scientific, Singapore 1992
  • [9] For the discussion of the Eliashberg formalism [originally formulated by G.M. Eliashberg Sov. Phys. JETP 11, 696 (1960)],we refer to: J.P. Carbotte, Rev. Mod. Phys. 62, 1027 (1990), doi: 10.1103/RevModPhys.62.1027
  • [10] R. Szczęśniak, D. Szczęśniak, Solid State Commun. 152, 779 (2012), doi: 10.1016/j.ssc.2012.01.045
  • [11] R. Szczęśniak, D. Szczęśniak, E.A. Drzazga, Solid State Commun. 152, 2023 (2012), doi: 10.1016/j.ssc.2012.08.022
  • [12] J. Bardeen, L.N. Cooper, J.R. Schrieffer, Phys. Rev. 106, 162 (1957), doi: 10.1103/PhysRev.106.162
  • [13] J. Bardeen, L.N. Cooper, J.R. Schrieffer, Phys. Rev. 108, 1175 (1957), doi: 10.1103/PhysRev.108.1175
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv126n1166kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.