Title variants
Languages of publication
Abstracts
We give a first report of the physical properties of the pair of cubic intermetallic compounds R_{3}Rh_{4}Ge_{13}, with R being either Yb or Lu. The crystal structure can be described in terms of 3 atomic cages, and we reveal how certain thermal physical properties are inherent to this particular atomic layout. Close to room temperature, Yb_{3}Rh_{4}Ge_{13} displays strong paramagnetism originating from Yb^{3+} ions, but upon cooling though 100 K the magnetic susceptibility and electrical resistivity behave according to a thermally driven valence instability, and we classify Yb_{3}Rh_{4}Ge_{13} therefore as an intermediate valent f-electron system. Lu_{3}Rh_{4}Ge_{13} behaves in a diamagnetic manner throughout our accessible temperature range, - first with a weakly temperature-dependent magnetic susceptibility below room temperature, and finally with a precipitous drop in the electrical resistivity to zero at 2.5 K when superconductivity sets in.
Discipline
- 71.20.Eh: Rare earth metals and alloys
- 75.40.Cx: Static properties (order parameter, static susceptibility, heat capacities, critical exponents, etc.)
- 75.30.Mb: Valence fluctuation, Kondo lattice, and heavy-fermion phenomena(see also 71.27.+a Strongly correlated electron systems, heavy fermions; for heavy-fermion superconductors, see 74.70.Tx)
- 63.20.-e: Phonons in crystal lattices(for phonons in superconductors, see 74.25.Kc; see also 43.35.Gk Phonons in crystal lattice, quantum acoustics—in Acoustics Appendix)
Journal
Year
Volume
Issue
Pages
318-321
Physical description
Dates
published
2014-07
Contributors
author
- Highly Correlated Matter Research Group, Physics Department, University of Johannesburg, PO Box 524, Auckland Park 2006, South Africa
References
- [1] J.P. Remeika, G.P. Espinosa, A.S. Cooper, H. Barz, J.M. Rowell, D.B. McWhan, J.M. Vandenberg, D.E. Moncton, Solid State Commun. 34, 923 (1980), doi: 10.1016/0038-1098(80)91099-6
- [2] J.M. Vandenberg, Mater. Res. Bull. 15, 835 (1980), doi: 10.1016/0025-5408(80)90018-5
- [3] J.L. Hodeau, J. Chenavas, M. Marezio, Solid State Commun. 36, 839 (1980), doi: 10.1016/0038-1098(80)90125-8
- [4] N. Kase, H. Hayamizu, K. Inoue, J. Akimitsu, Physica C 471, 711 (2011), doi: 10.1016/j.physc.2011.05.034
- [5] P.D. Kulkarni, S.S. Banerjee, C.V. Tomy, G. Balakrishnan, D.K.McK. Paul, S. Ramakrishnan, A.K. Grover, Phys. Rev. B 84, 014501 (2011), doi: 10.1103/PhysRevB.84.014501
- [6] H. Sato, T. Fukuhara, S. Iwakawa, Y. Aoki, I. Sakamoto, S. Takayanagi, N. Wada, Physica B 186-188, 630 (1993), doi: 10.1016/0921-4526(93)90657-R
- [7] U. Köhler, A.P. Pikul, N. Oeschler, T. Westerkamp, A.M. Strydom, F. Steglich, J. Phys.: Condens. Matter 19, 386207 (2007), doi: 10.1088/0953-8984/19/38/386207
- [8] A. M. Strydom, J. Phys.: Condens. Matter 19, 386205 (2007), doi: 10.1088/0953-8984/19/38/386205
- [9] A.M. Strydom, N. Oeschler, F. Steglich, Physica B 403, 746 (2008), doi: 10.1016/j.physb.2007.10.025
- [10] G. Venturini, M. Méot-Meyer, B. Malaman, B. Roques, J. Less-Comm. Metals 113, 197 (1985), doi: 10.1016/0022-5088(85)90277-2
- [11] C.U. Segre, H.F. Braun, K. Yvon, in Ternary Superconductors, Proc. Int. Conf., Eds. G.K. Shenoy, B.D. Dunlap, and F.Y. Fradin, Elsevier North-Holland, New York 1981, pp243-246
- [12] G. Venturini, M. Kamta, E. Mc Rae, J.F. Mareche, B. Malaman, B. Roques, Mat. Res. Bull. 21, 1203 (1986), doi: 10.1016/0025-5408(86)90048-6
- [13] K. Ghosh, S. Ramakrishnan, G. Chandra, Phys. Rev. B 48, 10435 (1993), doi: 10.1103/PhysRevB.48.10435
- [14] See for instance K. Behnia, D. Jaccard, J. Flouquet, J. Phys. Condens. Matter 16, 5187 (2004), doi: 10.1088/0953-8984/16/28/037
- [15] K. Miyake, H. Kohno, J. Phys. Soc. Japan 74, 254 (2005), doi: 10.1143/JPSJ.74.254
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv126n1154kz