Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2014 | 126 | 1 | 298-299

Article title

First-Principles Study of Kondo Insulator SmB_{6}

Content

Title variants

Languages of publication

EN

Abstracts

EN
We applied the Perdew-Burke-Ernzerhof hybrid functional (PBE0) within the density functional theory (DFT) to study electronic properties of the heavy fermion Kondo semiconductor SmB_{6}. The calculation of the Hartee-Fock exchange contribution to the exact-exchange within the atomic sphere approximation for bulk SmB_{6} represents a computationally efficient, parameter-free method that provides good qualitative and quantitative agreement with photoemission experiments. Specifically, we found an energy difference of 7 eV between the occupied and unoccupied correlated Sm f states. Furthermore, the spin-orbit coupling yields a splitting of the occupied Sm f states of about 1 eV in agreement with recent angular resolved photoemission spectroscopy. The electronic spectrum in the vicinity of the X point shows a hybridization between the Sm 5d conduction band and the localized Sm 4f states at the Fermi level. This might lead to a transport gap opening.

Keywords

EN

Contributors

author
  • University of Regensburg, Universitätsstraße 31, D-93040 Regensburg, Germany
  • Institute of Experimental Physics SAS, Watsonova 47, 040 01 Košice, Slovakia
  • Institute of Experimental Physics SAS, Watsonova 47, 040 01 Košice, Slovakia

References

  • [1] A. Yanase, H. Harima, Prog. Theor. Phys. Suppl. 108, 19 (1992), doi: 10.1143/PTPS.108.19
  • [2] M. Campagna, G.K. Wertheim, E. Bucher, Structure and Bonding 30, 99 (1970), doi: 10.1007/3-540-07887-8_3
  • [3] J.M. Tarascon, U. Isikawa, B. Chevalier, J. Etouneau, P. Hagenmuller, M. Kasaya, J. Phys. France 41, 1141 (1980), doi: 10.1051/jphys:0198000410100114100
  • [4] V.N. Antonov, B.N. Harmon, A.N. Yaresko, Phys. Rev. B 66, 165209 (2002), doi: 10.1103/PhysRevB.66.165209
  • [5] F. Lu, J.Z. Zhao, H. Weng, Z. Fang, X. Dai, Phys. Rev. Lett. 110, 096401 (2013), doi: 10.1103/PhysRevLett.110.096401
  • [6] P. Thunström, I. Di Marco, A. Grechnev, S. Lebègue, M.I. Katsnelson, A. Svane, O. Eriksson, Phys. Rev. B 79, 165104 (2009), doi: 10.1103/PhysRevB.79.165104
  • [7] M. Ernzerhof, G.E. Scuseria, J. Chem. Phys. 110, 5029 (1999), doi: 10.1063/1.478401
  • [8] C. Adamo, V. Barone, J. Chem. Phys. 110, 6158 (1999), doi: 10.1063/1.478522
  • [9] J.P. Perdew, M. Ernzerhof, K. Burke, J. Chem. Phys. 105, 9982 (1996), doi: 10.1063/1.472933
  • [10] P. Novák, J. Kuneš, L. Chaput, W.E. Pickett, phys. stat. sol. (b) 243, 563 (2006), doi: 10.1002/pssb.200541371
  • [11] K. Schwarz, P. Blaha, Comput. Mater. Sci. 28, 259 (2003), doi: 10.1016/S0927-0256(03)00112-5
  • [12] F. Tran, P. Blaha, K. Schwarz, P. Novák, Phys. Rev. B 74, 155108 (2006), doi: 10.1103/PhysRevB.74.155108
  • [13] H. Miyazaki, T. Hajiri, T. Ito, S. Kunii, S. Kimura, Phys. Rev. B 86, 075105 (2012), doi: 10.1103/PhysRevB.86.075105
  • [14] M.T. Czyżyk, G.A. Sawatzky, Phys. Rev. B 49, 14211 (1994), doi: 10.1103/PhysRevB.49.14211
  • [15] V.I. Anisimov, J. Zaanen, O.K. Andersen, Phys. Rev. B 44, 943 (1991), doi: 10.1103/PhysRevB.44.943

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv126n1144kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.