Journal
Article title
Authors
Title variants
Languages of publication
Abstracts
Glass forming abilities of a ternary Y-Co-Si system were determined on the basis of combined semi-empirical Miedema's and geometric models. The enthalpy of amorphous and solid solution phases formation, along with the mismatch entropy and GFA parameter, were analysed to indicate compositions with the highest ability for the amorphization. The large atomic radii difference between constituents, especially Y and Si, is the deciding factor of GFA. Compositions ranged between Y_{33}Si_{67} and Y_{45}Si_{55} are the best glass formers.
Discipline
- 05.70.-a: Thermodynamics(see also section 64 Equations of state, phase equilibria, and phase transitions, and section 65 Thermal properties of condensed matter; for chemical thermodynamics, see 82.60.-s; for thermodynamics of plasmas, see 52.25.Kn; for thermodynamic properties of quantum fluids, see 67.25.bd, and 67.30.ef; for thermodynamics of nanoparticles, see 82.60.Qr, and 65.80.-g; for thermodynamic processes in astrophysics, see 95.30.Tg; for thermodynamics in volcanology, see 91.40.Pc)
- 81.30.Bx: Phase diagrams of metals, alloys, and oxides
- 61.43.Dq: Amorphous semiconductors, metals, and alloys
Journal
Year
Volume
Issue
Pages
62-63
Physical description
Dates
published
2014-07
Contributors
author
- Institute of Molecular Physics, Polish Academy of Sciences, M. Smoluchowskiego 17, 60-179 Poznań, Poland
author
- Institute of Molecular Physics, Polish Academy of Sciences, M. Smoluchowskiego 17, 60-179 Poznań, Poland
author
- Institute of Molecular Physics, Polish Academy of Sciences, M. Smoluchowskiego 17, 60-179 Poznań, Poland
References
- [1] J.A. Somoza, L.J. Gallego, C. Rey, S. Rozenberg, B. Arcondo, H. Sirkin, R.H. Tendler, J.A. Kovacs, J.A. Alonso, J. Mater. Sci. 30, 40 (1995), doi: 10.1007/BF00352129
- [2] J. Basu, B.S. Murty, S. Ranganathan, J. All. Comp. 465, 163 (2008), doi: 10.1016/j.jallcom.2007.10.131
- [3] Z. Śniadecki, J.W. Narojczyk, B. Idzikowski, Intermet. 26, 72 (2012), doi: 10.1016/j.intermet.2012.03.003
- [4] K.H.J. Buschow, Phys. Scr. T1, 125 (1982), doi: 10.1088/0031-8949/1982/T1/039
- [5] F.R. de Boer, R. Boom, W.C.M. Mattens, A.R. Miedema and A.K. Niessen, in: Cohesion and Structure F.R. de Boer, D.G. Pettifor (Eds.), vol. 1, North Holland Physics, Amsterdam, 1988, pp. 1-758
- [6] H. Bakker, Enthalpies in Alloys - Miedema's Semi-Empirical Model, Materials Science Foundations 1, Trans Tech Publications Ltd., Switzerland, 1998, pp. 1-78
- [7] Y. Ouyang, X. Zhong, Y. Du, Z. Jin, Y. He, Z. Yuan, J. All. Comp. 416, 148 (2006), doi: 10.1016/j.jallcom.2005.08.055
- [8] J. Bhatt, W. Jiang, X. Junhai, W. Qing, C. Dong, B.S. Murty, Intermet. 15, 716 (2007), doi: 10.1016/j.intermet.2006.10.018
- [9] Z. Śniadecki, J. Marcin, I. Škorvánek, N. Pierunek, B. Idzikowski, J. All. Comp., 584, 477 (2014), doi: 10.1016/j.jallcom.2013.09.059
- [10] Q.Z. Hong, K. Barmak, L.A. Clevenger, J. Appl. Phys. 72, 3423 (1992), doi: 10.1063/1.351415
- [11] Y.Q. Liu, G. Shao, K.P. Homewood, J. Appl. Phys. 90, 724 (2001), doi: 10.1063/1.1381002
- [12] A. Takeuchi, A. Inoue, Trans. Jpn. Inst. Met. 41, 1372 (2000)
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv126n1027kz