Journal
Article title
Authors
Title variants
Languages of publication
Abstracts
The thermodynamics of a simple electron-spin model proposed recently for a description of magnetization processes in rare-earth tetraborides is studied numerically by the canonical Monte Carlo method in two-dimensions. The model is based on the coexistence of two subsystems, and namely, the spin subsystem described by the Ising model and the electronic subsystem described by the free-electron model on the Shastry-Sutherland lattice (SSL). Moreover, both subsystems are coupled by the anisotropic spin-dependent interaction of the Ising type. At T=0 the system exhibits the magnetization plateau (MP) at m/m_s=1/2, 1/3, 1/5, 1/7, 1/9 and 1/11 of the saturated spin magnetization m_s. For the largest phases corresponding to m/m_s=0, 1/3 and 1/2 we have examined the nature of the phase transitions from the low-temperature ordered phase (LTOP) to the high-temperature disordered phase (HTDP). It is shown that all phases persist also at finite temperatures (up to the critical temperature T_c) and that the phase transition at the critical point is of the second order for the m/m_s=0 phase and of the first order for the m/m_s=1/3 and 1/2 phases.
Discipline
- 75.40.Mg: Numerical simulation studies
- 05.70.Fh: Phase transitions: general studies(see also 05.30.Rt Quantum phase transitions in quantum statistical mechanics; 64.70.Tg Quantum phase transitions in specific phase transitions; 73.43.Nq Quantum phase transitions in quantum Hall effects; for superconductivity phase diagrams, see 74.25.Dw; for magnetic phase boundaries, see 75.30.Kz; for ferroelectric phase transitions, see 77.80.B-)
- 75.10.-b: General theory and models of magnetic ordering(see also 05.50.+q Lattice theory and statistics)
Journal
Year
Volume
Issue
Pages
44-45
Physical description
Dates
published
2014-07
Contributors
author
- Institute of Experimental Physics SAS, Watsonova 47, 040 01 Košice, Slovakia
author
- Institute of Experimental Physics SAS, Watsonova 47, 040 01 Košice, Slovakia
References
- [1] P. Farkašovský, H. Čenčariková, S. Maťaš, Phys. Rev. B 82, 054409 (2010), doi: 10.1103/PhysRevB.82.054409
- [2] K. Siemensmeyer, E. Wulf, H.-J. Mikeska, K. Flachbart, S. Gabáni, S. Mat'aš, P. Priputen, A. Efdokimova, N. Shitsevalova, Phys. Rev. Lett. 101, 177201 (2008), doi: 10.1103/PhysRevLett.101.177201
- [3] S. Yoshii, T. Yamamoto, M. Hagiwara, S. Michimura, A. Shigekawa, F. Iga, T. Takabatake and K. Kindo, Phys. Rev. Lett. 101, 087202 (2008), doi: 10.1103/PhysRevLett.101.087202
- [4] S. Matas, K. Siemensmeyer, E. Wheeler, E. Wulf, R. Beyer, Th. Hermannsdörfer, O. Ignatchik, M. Uhlarz, K. Flachbart, S. Gabáni, P. Priputen, A. Efdokimova and N. Shitsevalova, J. Phys.: Conf. Ser. 200, 032041 (2010), doi: 10.1088/1742-6596/200/3/032041
- [5] B.S. Shastry and B. Sutherland, Physica B and C 108, 1069 (1981), doi: 10.1016/0378-4363(81)90838-X
- [6] H. Čenčariková, P. Farkašovský, Eur. Phys. J. B 7, 393 (2010), doi: 10.1140/epjb/e2010-00286-y
- [7] M.S.S. Challa, D.P. Landau, K. Binder Phys. Rev. B 34, 1841 (1986), doi: 10.1103/PhysRevB.34.1841
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv126n1018kz