Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2014 | 126 | 1 | 30-31

Article title

Single Domain Wall Propagation at Low Fields

Content

Title variants

Languages of publication

EN

Abstracts

EN
We have studied the domain wall propagation at low fields regime in thin glass-coated microwire of composition Fe_{77.5}Si_{7.5}B_{15}. It is shown, that power law describes domain wall dynamics at low fields. Such behaviour results from the interaction of the propagating domain wall with the defects present in the material. At high fields, the domain wall mobility becomes negative. This can be explained as a result of domain structure relaxation. The exponent q from power law, which determines the domain wall shape, has a value of 0.19 for both cases, without applied stress and with applied stress of 20 MPa. This means, that domain wall shape is flexible in both measurements.

Keywords

EN

Contributors

author
  • Institute of Physics, Faculty of Sciences, P. J. Safarik University, Park Angelinum 9, 041 54 Košice, Slovakia
author
  • Institute of Physics, Faculty of Sciences, P. J. Safarik University, Park Angelinum 9, 041 54 Košice, Slovakia
author
  • Instituto de Ciencia de Materiales, CSIC 28049 Madrid, Spain

References

  • [1] D.A. Allwood, G. Xiong, C.C. Faulkner, D. Atiknson, D. Petit, R.P. Cowburn, Science 309, 1688 (2005), doi: 10.1126/science.1108813
  • [2] C.W. Chen, Magnetism and metallurgy of soft magnetic materials Dover Pub., Inc., New York 1986
  • [3] R. Varga, Y. Kostyk, A. Zhukov, M. Vazquez, J. of Non-Crystal. Solids 354, 5101 (2008), doi: 10.1016/j.jnoncrysol.2008.05.066
  • [4] R. Varga, J. Torrejon, Y. Kostyk, K.L. Garcia, G. Infantes, G. Badini, M. Vazquez, J.Phys.: Cond. Matter 20, 445215 (2008), doi: 10.1088/0953-8984/20/44/445215
  • [5] R. Varga, G. Infante, K. Richter, M. Vazquez, Phys. Stat. Sol. A 208, 509 (2011), doi: 10.1002/pssa.201026371
  • [6] G. Durin, The Barkhaussen effect in: Science of Hysteresis Vol. II, G. Bertotti, I. Mayergoyz, Acad. Press, Oxford 2006
  • [7] B. Alessandro, C. Beatrice, G. Bertotti, A. Montorsi, J. Appl. Phys. 68, 2901 (1990), doi: 10.1063/1.346423
  • [8] J. Ziman, V. Šuhajová, M. Kladivová, Physica B 407, 3905 (2012), doi: 10.1016/j.physb.2012.06.021
  • [9] J. Gonzalez, A. Chizik, A. Zhukov, J.M. Blanco, Phys. Stat. Sol. A 208, 502 (2011), doi: 10.1002/pssa.201026332

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv126n1011kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.