PL EN


Preferences help
enabled [disable] Abstract
Number of results
2014 | 125 | 6 | 1329-1332
Article title

Optical Emission Spectroscopy of Microwave (915 MHz) Plasma in Atmospheric Pressure Nitrogen with Addition of Ethanol Vapour

Content
Title variants
Languages of publication
EN
Abstracts
EN
In this paper results of optical emission spectroscopic study of microwave 915 MHz plasma in atmospheric pressure nitrogen with an addition of ethanol vapour are presented. The plasma was generated in waveguide-supplied cylinder-type nozzleless microwave plasma source. The aim of research was to determine the rotational T_{rot} and vibrational T_{vib} temperatures of CN and C_2. A method called bubbling was employed to introduce alcohol (ethanol) into the plasma. The T_{rot} and T_{vib} were determined by comparing the measured and simulated spectra. Obtained rotational and vibrational temperatures of CN and C_2 were ranged from 4400 to 5400 K and from 2800 to 3400 K, respectively, depending on the location in the plasma and the microwave absorbed power P_{A}.
Keywords
EN
Year
Volume
125
Issue
6
Pages
1329-1332
Physical description
Dates
published
2014-06
References
  • [1] J.D. Holladay, J. Hu, D.L. King, Y. Wang, Catal. Today 139, 244 (2009), doi: 10.1016/j.cattod.2008.08.039
  • [2] O. Bicakova, P. Straka, Int. J. Hydrogen Energy 37, 11563 (2012), doi: 10.1016/j.ijhydene.2012.05.047
  • [3] M. Jimenez, R. Rincon, A. Marinas, M.D. Calzada, Int. J. Hydrogen Energy 38, 8708 (2013), doi: 10.1016/j.ijhydene.2013.05.004
  • [4] M. Jasinski, M. Dors, J. Mizeraczyk, J. Power Sourc. 181, 41 (2008), doi: 10.1016/j.jpowsour.2007.10.058
  • [5] M. Jimenez, C. Yubero, M.D. Calzada, J. Phys. D, Appl. Phys. 41, 175201 (2008), doi: 10.1088/0022-3727/41/17/175201
  • [6] H. Sekiguchi, Y. Mori, Thin Solid Films 435, 44 (2003), doi: 10.1016/S0040-6090(03)00379-1
  • [7] U. Fantz, Plasma Sources Sci. Technol. 15, 137 (2006), doi: 10.1088/0963-0252/15/4/S01
  • [8] C.O. Laux, T.G. Spence, C.H. Kruger, R.N. Zare, Plasma Sources Sci. Technol. 12, 125 (2003), doi: 10.1088/0963-0252/12/2/301
  • [9] A. Okada, K. Kijima, J. Phys. D, Appl. Phys. 35, 2126 (2002), doi: 10.1088/0022-3727/35/17/308
  • [10] R.K. Garg, T.N. Anderson, R.P. Lucht, T.S. Fisher, J.P. Gore, J. Phys. D, Appl. Phys. 41, 095206 (2008), doi: 10.1088/0022-3727/41/9/095206
  • [11] B.N. Sismanoglu, K.G. Grigorov, R. Caetano, M.V.O. Rezende, Y.D. Hoyer, Eur. Phys. J. D 60, 505 (2010), doi: 10.1140/epjd/e2010-00219-0
  • [12] H. Nassar, J. Phys. Conf. Series 370, 012050 (2012), doi: 10.1088/1742-6596/370/1/012050
  • [13] H.S. Uhm, Y.C. Hong, D.H. Shin, Plasma Sources Sci. Technol. 15, 26 (2006), doi: 10.1088/0963-0252/15/2/S04
  • [14] J. Luque, D.R. Crosley, LIFBASE: Database and spectral simulation program (v 1.6), SRI International Report MP-99-009 (1999)
  • [15] C.O. Laux, in: Physico-Chemical Modeling of High Enthalpy and Plasma Flows, Eds. D. Fletcher, J.M. Charbonnier, G.S.R. Sarma, T. Magin, von Karman Institute Lecture Series 2002-07, Rhode-Saint-Genèse (Belgium) 2002
Document Type
Publication order reference
YADDA identifier
bwmeta1.element.bwnjournal-article-appv125n621kz
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.