Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2014 | 125 | 6 | 1316-1319

Article title

Influence of the Oxygen Plasma Treatment on Carbon Electrode and Capacity of Supercapacitors

Content

Title variants

Languages of publication

EN

Abstracts

EN
Amorphous carbon electrodes were deposited using atmospheric pressure plasma torch from the mixture of argon and acetylene gases on the stainless steel substrates. The ratio of Ar/C_2H_2 was in the range of 15-55. The deposited coatings were immersed in low pressure oxygen plasma for 1 min. Scanning electron microscopy images show that when Ar/C_2H_2 ratio increases from 15 to 55, the electrodes surface roughness decreases. The Raman scattering spectroscopy results indicated that the I_{D}/I_{G} ratio decreases from 2.04 to 1.35. It was observed that with the increase of Ar/C_2H_2 ratio from 15 to 55, the capacity of supercapacitor increases from 16 mF to 36 mF. The electric capacity of capacitors has increased up to 7 times after their exposure in oxygen plasma.

Keywords

EN

Contributors

  • Lithuanian Energy Institute, Plasma Processing Laboratory, Breslaujos 3, LT-4440, Kaunas, Lithuania
  • Kaunas University of Applied Sciences, Faculty of Technology, Pramones 20, LT-50468, Kaunas, Lithuania
  • Lithuanian Energy Institute, Plasma Processing Laboratory, Breslaujos 3, LT-4440, Kaunas, Lithuania
  • Kaunas University of Technology, Department of Physics, Studentu 50, LT-51368, Kaunas, Lithuania
author
  • Lithuanian Energy Institute, Plasma Processing Laboratory, Breslaujos 3, LT-4440, Kaunas, Lithuania

References

  • [1] R. Kotz, M. Carlen, Electrochim. Acta 45, 2483 (2000), doi: 10.1016/S0013-4686(00)00354-6
  • [2] A.G. Pandolfo, A.F. Hollenkamp, J. Power Sources 157, 11 (2006), doi: 10.1016/j.jpowsour.2006.02.065
  • [3] V.V.N. Obreja, Physica E 40, 2596 (2008), doi: 10.1016/j.physe.2007.09.044
  • [4] Y.L. Tai, H. Teng, Carbon 42, 2335 (2004), doi: 10.1016/j.carbon.2004.03.032
  • [5] K. Kierzek, E. Frackowiak, G. Lota, G. Gryglewicz, J. Machnikowski, Electrochim. Acta 49, 515 (2004), doi: 10.1016/j.electacta.2003.08.026
  • [6] Y.F. Su, Y. Wu, L.Y. Bao, Z.H. Yang, New Carbon Materials 22, 53 (2007), doi: 10.1016/S1872-5805(07)60007-9
  • [7] H. Liu, P. He, Z. Li, Y. Liu, J. Li, Electrochim. Acta 51, 1925 (2006), doi: 10.1016/j.electacta.2005.06.034
  • [8] H. Li, Y. Li, R. Wang, R. Cao, J. Alloys Comp. 481, 100 (2009), doi: 10.1016/j.jallcom.2009.03.058
  • [9] E. Ito, S. Mozia, M. Okuda, T. Nakano, M. Toyoda, M. Inagaki, New Carbon Mater. 22, 321 (2007), doi: 10.1016/S1872-5805(08)60003-7
  • [10] G. Lota, J. Tyczkowski, R. Kapica, K. Lota, E. Frackowiak, J. Power Sources 22, 195 (2010), doi: 10.1016/j.jpowsour.2009.12.019
  • [11] X. Li, B. Wei, Nano Energy 2, 2 (2013), doi: 10.1016/j.nanoen.2012.09.008
  • [12] L. Marcinauskas, Ž. Kavaliauskas, V. Valinčius, J. Mater. Sci. 10, 28 (2012), doi: 10.1016/S1005-0302(12)60153-4
  • [13] Z. Kavaliauaskas, L. Macinauskas, P. Valatkevicius, Acta Phys. Pol. A 119, 253 (2011)
  • [14] L. Marcinauskas, A. Grigonis, V. Valinčius, J. Non-Cryst. Solids 355, 1240 (2009), doi: 10.1016/j.jnoncrysol.2009.05.009
  • [15] L. Marcinauskas, A. Grigonis, V. Valinčius, P. Valatkevičius, High Temp. Mater. Proc. 13, 137 (2009)

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv125n617kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.