EN
We present optimization of energy transfer in the waveguide-supplied metal-cylinder-based microwave plasma module with an inner cylindrical quartz tube. The construction of microwave plasma module is based on a WR 340 waveguide standard. Presented microwave plasma module operates at atmospheric pressure and frequency of 2.45 GHz. There is a reduced height section waveguide in microwave plasma module which provides local increase of the electric field in the plasma region. Microwave plasma module is terminated with a movable plunger which plays the role of the tuning element. Tuning characteristics of microwave plasma module are defined as the dependence of the P_{R}/P_{I} on the position l_{s} of the movable plunger, where P_{R} and P_{I} are the microwave power reflected and power incident, respectively. The powers P_{R} and P_{I} are measured in the input plane of microwave plasma module. The purpose of the presented optimization is to achieve P_{R} lower than 5% of P_{I} in widest range of position of movable plunger l_{s}. We used Comsol Multiphysics software to make numerical analysis which allows to optimize the parameters of microwave plasma module. Results of numerical analysis show that P_{R}/P_{I} is lower than 0.05 in a wide range of movable plunger position l_{s}.