Journal
Article title
Authors
Title variants
Languages of publication
Abstracts
This work presents the results of TiN/MoN coatings studying. These multilayer nanostructured coatings demonstrate dependence on depositions conditions on nanometer level. The influence of nanosized monolayer thickness on structure changing and properties of nanocomposite multilayer coatings TiN/MoN was found. Multilayer TiN/MoN coatings of the total thickness from 6.8 to 8.2 μm were obtained using C-PVD method. Thicknesses of monolayers were 2, 10, 20, 40 nm. The structure of samples was studied using X-ray diffraction (Bruker D-8 Advance) in Cu K_{α} radiation, high resolution transmission electron microscopy with diffraction CFEI EO Techai F200, scanning electron microscopy with energy dispersive X-ray spectroscopy (JEOL-7001F), and microhardness measurements in dependence on indenter load. Scratch tests (friction, wear, etc.) were also provided using Rockwell-C diamond indenter (CSM Revetest Instruments) with a tip radius of 200 μm. Friction and wear behavior were evaluated using ball-on-plate sliding test on a UMT-3MT tribometer (CETR, USA). With decreasing monolayer thickness the hardness value increases, and the size of nanograins reduces. The values obtained for the friction coefficient of the multilayer system is much smaller than in nanostructured coatings of TiN (nc) or MoN (nc). Annealing showed formation of a (Ti,Mo)N solid solution and small growth of nanocrystals.
Discipline
- 62.20.Qp: Friction, tribology, and hardness(see also 46.55.+d Tribology and mechanical contacts in continuum mechanics of solids; for materials treatment effects on friction related properties, see 81.40.Pq)
- 62.25.-g: Mechanical properties of nanoscale systems(for structure of nanoscale systems, see 61.46.-w; for structural transitions in nanoscale materials, see 64.70.Nd; for electronic transport in nanoscale systems, see 73.63.-b)
- 61.46.-w: Structure of nanoscale materials(for thermal properties of nanocrystals and nanotubes, see 65.80.-g; for mechanical properties of nanoscale systems, see 62.25.-g; for electronic transport in nanoscale materials, see 73.63.-b; see also 62.23.-c Structural classes of nanoscale systems; 64.70.Nd Structural transitions in nanoscale materials; for magnetic properties of nanostructures, see 75.75.-c)
Journal
Year
Volume
Issue
Pages
1280-1283
Physical description
Dates
published
2014-06
Contributors
author
- Sumy State University, Rymskogo-Korsakova 2, Sumy, 40007, Ukraine
author
- Institute P', Université de Poitiers-CNRS-ENSMA, SP2MI, Téléport 2, F86962 Chasseneuil-Futuroscope CEDEX, France, France
author
- Sumy State University, Rymskogo-Korsakova 2, Sumy, 40007, Ukraine
author
- Sumy State University, Rymskogo-Korsakova 2, Sumy, 40007, Ukraine
author
- Sumy State University, Rymskogo-Korsakova 2, Sumy, 40007, Ukraine
author
- Sumy State University, Rymskogo-Korsakova 2, Sumy, 40007, Ukraine
author
- National Science Center, Kharkov Institute of Physics and Technology, Akademicheskaya 1, Kharkiv, 61108, Ukraine
author
- Kharkiv National University, maj. Nezalezhnosti 4, Kharkiv, 61022, Ukraine
author
- Belgorod State University, Pobedy 85, Belgorod, 308015, Russia
author
- Institute of Transport, Combustion Engines and Ecology, Lublin University of Technology, Nadbystrzycka 36, 20-618 Lublin, Poland
References
- [1] A.D. Pogrebnjak, A.P. Shpak, N.A. Azarenkov, V.M. Beresnev, Phys. Usp. 52, 29 (2009), doi: 10.3367/UFNe.0179.200901b.0035
- [2] M.K. Kazmanli, M. Urgen, A.F. Cakir, Surf. Coat. Technol. 167, 77 (2003), doi: 10.1016/S0257-8972(02)00866-6
- [3] A.D. Pogrebnjak, A.G. Ponomarev, A.P. Shpak, Yu.A. Kunitskii, Phys. Usp. 55, 270 (2012), doi: 10.3367/UFNe.0182.201203d.0287
- [4] A.D. Pogrebnyak, V.M. Beresnev, A.Sh. Kaverina, A.P. Shypylenko, O.V. Kolisnichenko, K. Oyoshi, Y. Takeda, H. Murakami, D.A. Kolesnikov, M.S. Prozorova, Tech. Phys. Lett. 39, 189 (2013), doi: 10.1134/S1063785013020223
- [5] A.D. Pogrebnjak, A.P. Shpak, V.M. Beresnev, D.A. Kolesnikov, Yu.A. Kunitskii, O.V. Sobol, V.V. Uglov, F.F. Komarov, A.P. Shypylenko, N.A. Makhmudov, A.A. Demyanenko, V.S. Baidak, V.V. Grudnitskii, J. Nanosci. Nanotechnol. 12, 9213 (2012), doi: 10.1166/jnn.2012.6777
- [6] R. Krause-Rehberg, A.D. Pogrebnyak, V.N. Borisyuk, M.V. Kaverin, A.G. Ponomarev, M.A. Bilokur, K. Oyoshi, Y. Takeda, V.M. Beresnev, O.V. Sobol, Phys. Met. Metallogr. 114, 672 (2013), doi: 10.1134/S0031918X13080061
- [7] A.D. Pogrebnjak, V.M. Beresnev, A.A. Demianenko, V.S. Baidak, F.F. Komarov, M.V. Kaverin, N.A. Makhmudov, D.A. Kolesnikov, Phys. Solid State 54, 1882 (2012), doi: 10.1134/S1063783412090247
- [8] T.N. Koltunowicz, P. Zhukowski, A.K. Fedotov, A.V. Larkin, A. Patryn, B. Andryevskyy, A. Saad, J.A. Fedotova, V.V. Fedotova, Elektronika ir Elektrotechnika (Electron. Electr. Eng.) 19, 37 (2013), doi: 10.5755/j01.eee.19.4.1693
- [9] P. Zukowski, T. Koltunowicz, J. Partyka, Yu.A. Fedotov, A.V. Larkin, Vacuum 83, S275 (2009), doi: 10.1016/j.vacuum.2009.01.081
- [10] I.A. Lyashenko, A.V. Khomenko, L.S. Metlov, Techn. Phys. 55, 1193 (2010), doi: 10.1134/S1063784210080190
- [11] A.D. Pogrebnjak, J. Nanomater. 2013, ID 780125, (2013), doi: 10.1155/2013/780125
- [12] A.D. Pogrebnjak, O.V. Sobol, V.M. Beresnev, P.V. Turbin, G.V. Kirik, N.A. Makhmudov, M.V. Il'yashenko, A.P. Shypylenko, M.V. Kaverin, M.Yu. Tashmetov, A.V. Pshyk, Nanostruct. Mater. Nanotechnol. IV: Ceram. Eng. Sci. Proc. 31, 127 (2010), doi: 10.1002/9780470944042.ch14
- [13] A.V. Khomenko, N.V. Prodanov, Condens. Matter Phys. 11, 615 (2008), doi: 10.5488/CMP.11.4.615
- [14] V. Ivashchenko, S. Veprek, A.D. Pogrebnjak, in: Proc. Int. Conf. Nanomaterials: Applications and Properties, Vol. 1, Ed.: A.D. Pogrebnjak, Sumy State University, Sumy 2012, p. 03PCSI19 http://nap.sumdu.edu.ua:8080/index.php/nap/nap2012/paper/view/809
- [15] A.D. Pogrebnjak, S.N. Bratushka, V.M. Beresnev, N. Levintant-Zayonts, Russ. Chem. Rev. 82, 1135 (2013), doi: 10.1070/RC2013v082n12ABEH004344
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv125n607kz