PL EN


Preferences help
enabled [disable] Abstract
Number of results
2014 | 125 | 6 | 1260-1263
Article title

Atmospheric Pressure Plasma Jet for Mass Spectrometry

Content
Title variants
Languages of publication
EN
Abstracts
EN
The atmospheric pressure plasma is much advantageous over low pressure plasmas in various aspects, e.g. vacuum-free operation, relative low cost, flexibility of a continuous process. Among various plasmas generated in atmospheric pressure discharges there are cold plasma jets that represent a technology of great application promise (industry, medicine, biology). To generate low-temperature plasmas at atmospheric pressure the dielectric barrier discharge can be used. It is suitable for the atomization of volatile species and can also be served as a ionization source for ambient mass and ion mobility spectrometry. As the discharge is generated in a restricted electrode structure, a plasma jet (plume) is usually formed outside the electrode region (that provides spatial separation of the plasma generation and surface processing regions). The paper presents a source based on a plasma jet established at the end of a capillary dielectric barrier discharge at atmospheric pressure and its application to mass spectrometry. The structure of the jet generator consists of piezoelectric transformer and two concentric and symmetric electrodes, between which the working gas flows at definite rate. Besides the source description early results of spectroscopic analysis are also given.
Keywords
EN
Contributors
author
  • Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
author
  • Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
author
  • Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
author
  • Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
author
  • AGH University of Science and Technology, al. A. Mickiewicza 30, 30-059 Krakow, Poland
author
  • AGH University of Science and Technology, al. A. Mickiewicza 30, 30-059 Krakow, Poland
References
  • [1] S.A. Starostin, P. Antony Premkumar, M. Creatore, H. de Vries, R.M.J. Paffen, M.C.M. van de Sanden, Appl. Phys. Lett. 96, 061502 (2010), doi: 10.1063/1.3310024
  • [2] M.C. Kim, D.K. Song, H.S. Shn, S.-H. Baeg, G.S. Kim, J.-H. Boo, J.G. Han, S.H. Yang, Surf. Coat. Technol. 171, 312 (2003), doi: 10.1016/S0257-8972(03)00292-5
  • [3] S.A. Fernández-Gutierrez, P.D. Pedr, M.J. Pitts, J. Powers, IEEE Trans. Plasma Sci. 38, 957 (2010), doi: 10.1109/TPS.2010.2042078
  • [4] G.B. McCombs, M.L. Darby, Int. J. Dent. Hygiene 8, 10 (2010), doi: 10.1111/j.1601-5037.2009.00386.x
  • [5] M. Vandamme, E. Robert, S. Lerondel, V. Sarron, D. Ries, S. Dozias, J. Sobilo, D. Gosset, C. Kieda, B. Legrain, J.-M. Pouvesle, A. Le Pape, Int. J. Cancer 130, 2185 (2012), doi: 10.1002/ijc.26252
  • [6] A. Schütze, J.Y. Jeong, S.E. Babayan, J. Park, G.S. Selwyn, R.F. Hicks, IEEE Trans. Plasma Sci. 26, 1685 (1998)
  • [7] A. Bogaerts, E. Neyts, R. Gijbels, J. van der Mullen, Spectrochim. Acta B 57, 609 (2002)
  • [8] V. Nehra, A. Kumar, H.K. Dwivedi, Int. J. Eng. 2, 53 (2007)
  • [9] N. Jiang, A.L. Ji, Z.X. Cao, J. Appl. Phys. 106, 013308 (2009), doi: 10.1063/1.3159884
  • [10] W.-C. Zhu, Q. Li, X.-M. Zhu, Y.-K. Pu, J. Phys. D, Appl. Phys. 42, 202002 (2009), doi: 10.1088/0022-3727/42/20/202002
  • [11] J. Franzke, Anal. Bioanal. Chem. 395, 549 (2009), doi: 10.1007/s00216-009-2799-4
  • [12] J. Ran, H. Luo, X. Wang, in: 30th Int. Conf. Phen. Ion. Gas, ICPIG 2011, Queen's University Belfast, Belfast 2011
  • [13] X.P. Lu, Z.H. Jiang, Q. Xiong, Z.Y. Tang, Y. Pan, Appl. Phys. Lett. 92, 151504 (2008), doi: 10.1063/1.2912524
  • [14] A. Shashurin, M. Keidar, S. Bronnikov, R.A. Jurjus, M.A. Stepp, Appl. Phys. Lett. 93, 181501 (2008), doi: 10.1063/1.3020223
  • [15] Y.C. Hong, W.S. Kang, Y.B. Hong, W.J. Yi, H.S. Uhm, Phys. Plasmas 16, 123502 (2009), doi: 10.1063/1.3272089
  • [16] Y.S. Seo, H.W. Lee, H.C. Kwon, J. Choi, S.M. Lee, K.C. Woo, K.T. Kim, J.K. Lee, Thin Solid Films 519, 7071 (2011), doi: 10.1016/j.tsf.2010.11.057
  • [17] J. Franzke, K. Kunze, M. Miclea, K. Niemax, J. Anal. At. Spectrom. 18, 802 (2003), doi: 10.1039/b300193h
  • [18] A. Michels, S. Tombrink, W. Vautz, M. Miclea, J. Franzke, Spectrochim. Acta B 62, 1208 (2007), doi: 10.1016/j.sab.2007.08.004
  • [19] S.B. Olenici-Craciunescu, A. Michels, C. Meyer, R. Heming, S. Tombrink, W. Vautz, J. Franzke, Spectrochim. Acta B 64, 1253 (2009), doi: 10.1016/j.sab.2009.10.001
  • [20] S.B. Olenici-Craciunescu, S. Müller, A. Michels, V. Horvatic, C. Vadla, J. Franzke, Spectrochim. Acta B 66, 268 (2011), doi: 10.1016/j.sab.2011.03.005
  • [21] K.G. Kim, G.Y. Kim, Y.C. Hong, S.S. Yang, Microelectron. Eng. 87, 1177 (2010), doi: 10.1016/j.mee.2009.12.045
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv125n602kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.