PL EN


Preferences help
enabled [disable] Abstract
Number of results
2014 | 125 | 5 | 1249-1250
Article title

Preparation and Characterization of Aligned Iron Oxide Carbon Nanotube Thin Film. Acta Physica Polonica A 125, 77 (2014), ERRATUM

Content
Title variants
Languages of publication
EN
Abstracts
EN
Thin films of acid-functionalized multiwall carbon nanotubes (O-MWCNT) with different concentrations and coated O-MWCNT with Fe_3O_4 nanoparticles (MWCNT/Fe_3O_4) were prepared on glass substrate at 300°C by spray pyrolysis technique. In order to study the effect of nanotubes alignment on the physical properties of carbon nanotube films, thin film of iron oxide nanoparticles coated carbon nanotubes was deposited under magnetic field of 0.4 T. All samples were characterized using UV-Vis spectroscopy, X-ray diffraction scanning electron microscopy and the Hall effect experiment. Results show that the electrical conductivity and optical transmittance of carbon nanotubes thin films depend on the concentration of carbon nanotubes and their arrangement at the films. Aligning carbon nanotubes in thin films leads to an obvious improvement in electrical and optical properties of thin films. Results show that the electrical conductivity and optical transmittance of carbon nanotubes thin films depend on the concentration of carbon nanotubes and their arrangement at the films. Aligning carbon nanotubes in thin films leads to an obvious improvement in electrical and optical properties of thin films.
Keywords
EN
Discipline
Publisher

Year
Volume
125
Issue
5
Pages
1249-1250
Physical description
Dates
published
2014-05
Contributors
author
  • Department of Physics, Faculty of Science, University of Guilan, Rasht, Iran
author
  • Department of Physics, Faculty of Science, University of Guilan, Rasht, Iran
author
  • Department of Physics, Faculty of Science, University of Guilan, Rasht, Iran
References
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv125n534kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.