Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2014 | 125 | 5 | 1240-1243

Article title

Desorption Activation Energy of SiBr_2 Molecules according to Steady-State Approximation

Content

Title variants

Languages of publication

EN

Abstracts

EN
The chemical etching of intrinsic and n-type polycrystalline silicon in Br_2 ambient is considered. The theoretically calculated dependences of silicon etching rates on pressure of Br_2 molecules at different temperatures are compared with experimentally measured ones. The reaction and desorption activation energies are evaluated. It is found that activation energy of Si + Br_2 → SiBr_2 reaction for intrinsic silicon is equal to (1.82 ± 0.24) eV, and decreases to (1.45 ± 0.24) eV when n-type silicon films are used. Desorption activation energy of SiBr_2 molecules for intrinsic silicon is equal to (1.94 ± 0.17) eV, and decreases to (1.51 ± 0.17) eV when n-type silicon films are used. Desorption of SiBr_2 molecules is an etching-rate limiting process at high pressure of Br_2 molecules.

Keywords

EN

Contributors

  • Department of Physics, Kaunas University of Technology, 73 K. Donelaičio St., LT-44029 Kaunas, Lithuania

References

  • [1] D. Rioux, M. Chander, Y.Z. Li, J.H. Weaver, Phys. Rev. B 49, 11071 (1994), doi: 10.1103/PhysRevB.49.11071
  • [2] G.J. Xu, E. Graugnard, B.R. Trenhaile, K.S. Nakayama, J.H. Weaver, Phys. Rev. B 68, 075301 (2003), doi: 10.1103/PhysRevB.68.075301
  • [3] M. Chander, Y.Z. Li, D. Rioux, J.H. Weaver, Phys. Rev. Lett. 71, 4154 (1993), doi: 10.1103/PhysRevLett.71.4154
  • [4] Z.H. Walker, E.A. Ogryzlo, J. Chem. Soc. Faraday Trans. 87, 45 (1991), doi: 10.1039/FT9918700045
  • [5] Z.H. Walker, E.A. Ogryzlo, J. Electrochem. Soc. 138, 3050 (1991), doi: 10.1149/1.2085365
  • [6] R. Knizikevičius, Vacuum 83, 953 (2009), doi: 10.1016/j.vacuum.2008.11.002
  • [7] Z.H. Walker, Ph.D. Thesis, University of British Columbia, Vancouver 1990. http://hdl.handle.net/2429/32378
  • [8] I. Chorkendorff, J.W. Niemantsverdriet, Concepts of Modern Catalysis and Kinetics, Wiley, Weinheim 2003
  • [9] C.J. Cramer, Essentials of Computational Chemistry: Theories and Models, Wiley, Chichester 2004
  • [10] T. Bligaard, J.K. Nørskov, in: Chemical Bonding at Surfaces and Interfaces, Eds. A. Nilsson, L.G.M. Pettersson, J.K. Nørskov, Elsevier, Amsterdam 2008, p. 255
  • [11] M. Tanaka, E. Yamakawa, T. Shirao, K. Shudo, Phys. Rev. B 68, 165411 (2003), doi: 10.1103/PhysRevB.68.165411

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv125n532kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.