PL EN


Preferences help
enabled [disable] Abstract
Number of results
2014 | 125 | 5 | 1224-1228
Article title

Investigations on the EPR Parameters of KMgF_3:Cr^{+}

Authors
Content
Title variants
Languages of publication
EN
Abstracts
EN
The electron paramagnetic resonance parameters (i.e., g factor, hyperfine structure constant and superhyperfine parameters) of KMgF_3:Cr^{+} are theoretically investigated from the perturbation formulae of these parameters for an octahedral 3 d^5 cluster. As for the calculations of g factor and hyperfine structure constant, both the contributions from the crystal-field and charge transfer mechanisms are included based on the cluster approach. The metal to ligand charge transfer contribution to the g-shift Δg ( ≈ g-2.0023) is the same (negative) in sign and much larger in magnitude as compared to the crystal-field one. The conventional argument that the charge transfer contributions to zero-field splittings are negligible for 3 d^5 ions in fluorides is no longer suitable for Δg analysis of KMgF_3:Cr^{+} due to the dominant second-order charge transfer perturbation term. The charge transfer contribution to hyperfine structure constant exhibits the same sign and about 4% of the crystal-field one. The unpaired spin densities of the fluorine 2s, 2pσ and 2pπ orbitals are quantitatively acquired from the relationships with the relevant molecular orbital coefficients using the uniform model. The present treatments are superior to the previous calculations of directly fitting the experimental superhyperfine parameters.
Keywords
EN
Publisher

Year
Volume
125
Issue
5
Pages
1224-1228
Physical description
Dates
published
2014-05
received
2013-05-24
(unknown)
2014-03-13
Contributors
author
  • School of Physical Electronics, University of Electronic Science and Technology of China Chengdu 610054, P.R. China
author
  • School of Physical Electronics, University of Electronic Science and Technology of China Chengdu 610054, P.R. China
author
  • School of Physical Electronics, University of Electronic Science and Technology of China Chengdu 610054, P.R. China
author
  • School of Physical Electronics, University of Electronic Science and Technology of China Chengdu 610054, P.R. China
author
  • School of Physical Electronics, University of Electronic Science and Technology of China Chengdu 610054, P.R. China
References
  • [1] D.R. Lee, T.P.J. Han, B. Henderson, Appl. Phys. A 59, 365 (1994), doi: 10.1007/BF00331713
  • [2] G. Kitis, C. Furetta, C. Sanipoli, A. Scacco, Radiat. Prot. Dosim. 65, 93 (1996)
  • [3] A. Caramanian, J.P. Souron, P. Gredin, A. de Kozak, J. Derouet, B. Viana, J. Lumin. 104, 161 (2003), doi: 10.1016/S0022-2313(03)00013-9
  • [4] R. Augusto, Z. López, G.S. Dixon, Phys. Lett. A 58, 267 (1976), doi: 10.1016/0375-9601(76)90095-5
  • [5] P. García-Fernández, A. Trueba, B. Gacía-Cueto, J.A. Aramburu, M.T. Barriuso, M. Moreno, Phys. Rev. B 83, 125123 (2011), doi: 10.1103/PhysRevB.83.125123
  • [6] A. Buzulutskov, Y. Vanyushkin, Nucl. Instrum. Methods Phys. Res. A 343, 241 (1994), doi: 10.1016/0168-9002(94)90557-6
  • [7] A.S. Bhalla, R. Guo, R. Roy, Mater. Res. Innov. 4, 3 (2000), doi: 10.1007/s100190000062
  • [8] A. Abragam, B. Bleaney, Electron Parmagnetic Resonance of Transition Ions, Oxford University Press, London 1970
  • [9] A.S. Chakravarty, Introduction to the Magnetic Properties of Solids, Wiley InterScience, New York 1980
  • [10] H.L. Van Camp, Y.W. Kim, Phys. Rev. B 11, 3098 (1975), doi: 10.1103/PhysRevB.11.3098
  • [11] J.J. Davies, K. Horai, J. Phys. C 4, 671 (1971), doi: 10.1088/0022-3719/4/5/016
  • [12] J.J. Davies, Phys. Lett. A 40, 423 (1972), doi: 10.1016/0375-9601(72)90561-0
  • [13] T.P.P. Hall, W. Hayes, R.W.H. Stevenson, J. Chem. Phys. 38, 1977 (1963), doi: 10.1063/1.1733906
  • [14] A.B.P. Lever, Inorganic Electronic Spectroscopy, Elsevier, Amsterdam 1984
  • [15] R.R. Sharma, in: Advances in Mössbauer Spectroscopy, Eds. B.V. Thosar, P.K. Lyenga, Elsevier Science, Amsterdam 1983
  • [16] W.L. Yu, M.G. Zhao, Phys. Rev. B 37, 9254 (1988), doi: 10.1103/PhysRevB.37.9254
  • [17] S.Y. Wu, X.Y. Gao, H.N. Dong, J. Magn. Magn. Mater. 301, 67 (2006), doi: 10.1016/j.jmmm.2005.06.010
  • [18] H. Ziegler, Phys. Status Solidi B 49, 367 (1972), doi: 10.1002/pssb.2220490135
  • [19] J.S. Griffith, The Theory of Transition-Metal Ions, Cambridge Press, London 1964
  • [20] J. Owen, J.H.M. Thornley, Rep. Prog. Phys. 29, 675 (1966), doi: 10.1088/0034-4885/29/2/306
  • [21] T.P.P. Hall, W. Hayes, R.W.H. Stevenson, J. Wilkens, J. Chem. Phys. 39, 35 (1963), doi: 10.1063/1.1734030
  • [22] R.C. Weast, CRC Handbook of Chemistry and Physics, CRC Press, Boca Raton 1989
  • [23] G. Fernandez Rodrigo, L. Pueyo, M. Moreno, M.T. Barriuso, J. Solid State Chem. 67, 64 (1987), doi: 10.1016/0022-4596(87)90339-2
  • [24] M.G. Zhao, J.A. Xu, G.R. Bai, H.S. Xie, Phys. Rev. B 27, 1516 (1983), doi: 10.1103/PhysRevB.27.1516
  • [25] H. Watanabe, J. Phys. Chem. Solids 28, 961 (1967), doi: 10.1016/0022-3697(67)90211-9
  • [26] E. Clementi, D.L. Raimondi, J. Chem. Phys. 38, 2686 (1963), doi: 10.1063/1.1733573
  • [27] E. Clementi, D.L. Raimondi, W.P. Reinhardt, J. Chem. Phys. 47, 1300 (1967), doi: 10.1063/1.1712084
  • [28] B.R. McGarvey, J. Phys. Chem. 71, 51 (1967), doi: 10.1021/j100860a007
  • [29] G.L. McPerson, R.C. Koch, G.D. Stucky, J. Chem. Phys. 60, 1424 (1974), doi: 10.1063/1.1681215
  • [30] U. Kaufmann, A. Räuber, J. Schneider, J. Phys. C 8, L381 (1975), doi: 10.1088/0022-3719/8/18/002
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv125n529kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.