Journal
Article title
Authors
Title variants
Languages of publication
Abstracts
The methodology used in recent study of the zero-field splitting parameters of Cr^{3+} ions at various orthorhombic symmetry sites in LiKSO_4 by Pandey and Kripal is critically commented on. We argue that the crystal field parameters, B_{kq}, in the Wybourne notation, which were calculated using the superposition model for Cr^{3+} ions in LiKSO_4, may only be converted into the crystal field parameters in the Stevens notation. Regrettably, the authors have also converted the latter parameters supposedly into the zero-field splitting parameters D and E in the conventional notation. Such direct conversions are fundamentally incorrect and constitute factual invalid usage of the conversion relations between the crystal field (ligand field) parameters and the zero-field splitting ones. The cases of an implied usage of the invalid conversion relations between the crystal field parameters and the zero-field splitting parameters occurring in recent literature are also outlined. Pandey and Kripal have found the zero-field splitting parameters theoretically evaluated in this way to be in good agreement with the experimental values. However, the faulty methodology renders the conclusion that Cr^{3+} ions enter into the LiKSO_4 lattice at the substitutional K^{+} sites unjustified. Several other conceptual problems arising from misinterpretations of the crucial notions identified therein are also discussed and clarified.
Discipline
- 71.70.Ch: Crystal and ligand fields
- 76.30.Fc: Iron group (3d) ions and impurities (Ti-Cu)
- 75.10.Dg: Crystal-field theory and spin Hamiltonians(see also 71.70.Ch Crystal and ligand fields)
- 76.30.-v: Electron paramagnetic resonance and relaxation(see also 33.35.+r Electron resonance and relaxation in atomic and molecular physics; 87.80.Lg Magnetic and paramagnetic resonance in biological physics)
Journal
Year
Volume
Issue
Pages
1215-1219
Physical description
Dates
published
2014-05
received
2014-02-17
Contributors
author
- Institute of Physics, West Pomeranian University of Technology, al. Piastów 17, 70-310 Szczecin, Poland
author
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland
References
- [1] B.N. Figgis, M.A. Hitchman, Ligand Field Theory and Its Applications, Wiley-VCH, New York 2000
- [2] Crystal Field Handbook, Eds. D.J. Newman, B. Ng, Cambridge University Press, Cambridge 2000
- [3] M. Wildner, M. Andrut, C. Rudowicz, in: Spectroscopic Methods in Mineralogy - EMU Notes Mineralogy, Eds. A. Beran, E. Libowitzky, Vol. 6, Eötvös Univ. Press, Budapest 2004, Ch. 3, p. 93
- [4] G. Liu, B. Jacquier, Spectroscopic Properties of Rare Earths in Optical Materials, Eds.: G. Liu, B. Jacquier, Tsinghua University Press and Springer, Berlin 2005
- [5] C. Rudowicz, Magn. Reson. Rev. 13, 1 (1987); erratum, ibid., 13, 335 (1988)
- [6] C. Rudowicz, S.K. Misra, Appl. Spectrosc. Rev. 36, 11 (2001), doi: 10.1081/ASR-100103089
- [7] J.A. Weil, J.R. Bolton, Electron Paramagnetic Resonance, Elemental Theory and Practical Applications, Wiley, New York 2007
- [8] J.R. Pilbrow, Transition-Ion Electron Paramagnetic Resonance, Clarendon Press, Oxford 1990
- [9] F.E. Mabbs, D. Collison, Electron Paramagnetic Resonance of d Transition-Metal Compounds, Elsevier, Amsterdam 1992
- [10] Multifrequency Electron Paramagnetic Resonance, Ed. S.K. Misra, Wiley-VCH, Weinheim 2011
- [11] K.W.H. Stevens, Magnetic Ions in Crystals, Princeton Univ. Press, Princeton 1997
- [12] R. Boča, Theoretical Foundations of Molecular Magnetism, Elsevier, Amsterdam 1999
- [13] K.H.J. Buschow, F.R. de Boer, Physics of Magnetism, Magnetic Materials, Kluwer Academic, New York 2003
- [14] C. Rudowicz, M. Karbowiak, Interface between the physical crystal field Hamiltonians and the effective spin Hamiltonians, a primer for experimentalists, in preparation, 2014
- [15] C. Rudowicz, H.W.F. Sung, Physica B 337, 204 (2003), doi: 10.1016/S0921-4526(03)00406-X
- [16] S. Pandey, R. Kripal, Acta Phys. Pol. A 123, 101 (2013), doi: 10.12693/APhysPolA.123.101
- [17] L. Sorace, C. Benelli, D. Gatteschi, Chem. Soc. Rev. 40, 3092 (2011), doi: 10.1039/c0cs00185f
- [18] T.H. Yeom, C. Rudowicz, S.H. Choh, D.G. McGavin, Physica Status Solidi B 198, 839 (1996), doi: 10.1002/pssb.2221980229
- [19] C. Rudowicz, P. Gnutek, Physica B 403, 2349 (2008), doi: 10.1016/j.physb.2007.12.017
- [20] P. Gnutek, C. Rudowicz, Opt. Mater. 31, 391 (2008), doi: 10.1016/j.optmat.2008.05.013
- [21] A. Yamashita, A. Watanabe, S. Akine, T. Nabeshima, M. Nakano, T, Yamamura, T. Kajiwara, Angew. Chem. Int. Ed. 50, 4016 (2011), doi: 10.1002/anie.201008180
- [22] N.F. Chilton, PHI User Manual v1.7, 2013
- [23] J.M. Clemente-Juan, E. Coronado, A. Gaita-Arino, Chem. Soc. Rev. 41, 7464 (2012), doi: 10.1039/c2cs35205b
- [24] J.J. Baldoví, S. Cardona-Serra, J.M. Clemente-Juan, E. Coronado, A. Gaita-Arino, A. Palii, J. Comput. Chem. 34, 1961 (2013), doi: 10.1002/jcc.23341
- [25] J.J. Baldoví, S. Cardona-Serra, J.M. Clemente-Juan, E. Coronado, A. Gaita-Ariño, A. Palii, Inorg. Chem. 51, 12565 (2012), doi: 10.1021/ic302068c
- [26] J.J. Baldoví, J.J. Borrás-Almenar, J.M. Clemente-Juan, E. Coronado, A. Gaita-Ariño, Dalton Trans. 41, 13705 (2012), doi: 10.1039/c2dt31411h
- [27] D.J. Newman, W. Urban, Adv. Phys. 24, 793 (1975), doi: 10.1080/00018737500101511
- [28] D.J. Newman, B. Ng, Rep. Prog. Phys. 52, 699 (1989), doi: 10.1088/0034-4885/52/6/002
- [29] D.J. Newman, B. Ng, in: Crystal Field Handbook, Eds. D.J. Newman, B. Ng, University Press, Cambridge 2000, Ch. 5, p. 83
- [30] M. Andrut, M. Wildner, C. Rudowicz, in: Spectroscopic Methods in Mineralogy, EMU Notes in Mineralogy, Vol. 6, Eds. A. Beran, E. Libowitzky, Eötvös University Press, Budapest 2004, Ch. 4, p. 145
- [31] C. Rudowicz, R. Bramley, J. Chem. Phys. 83, 5192 (1985), doi: 10.1063/1.449731
- [32] C. Rudowicz, P. Gnutek, Physica B 404, 113 (2010), doi: 10.1016/j.physb.2009.08.046)
- [33] C. Rudowicz, J. Qin, J. Lumin. 110, 39 (2004), doi: 10.1016/j.jlumin.2004.04.003
- [34] R. Kripal, D. Yadav, P. Gnutek, C. Rudowicz, J. Phys. Chem. Solids 70, 827 (2009), doi: 10.1016/j.jpcs.2009.04.003
- [35] C. Rudowicz, P. Gnutek, J. Phys., Condens. Matter. 22, 45501 (2010), doi: 10.1088/0953-8984/22/4/045501
- [36] D. Yadav, R. Kripal, P. Gnutek, C. Rudowicz, J. Phys. Chem. Solids 74, 751 (2013), doi: 10.1016/j.jpcs.2013.01.016
- [37] R. Kripal, I. Mishra, Mater. Chem. Phys. 119, 230 (2010), doi: 10.1016/j.matchemphys.2009.08.055
- [38] P. Gnutek, M. Açıkgöz, C. Rudowicz, Opt. Mater. 32, 1161 (2010), doi: 10.1016/j.optmat.2010.03.024
- [39] M. Acikgoz, P. Gnutek, C. Rudowicz, Solid State Commun. 150, 1077 (2010), doi: 10.1016/j.ssc.2010.03.008
- [40] M. Acikgoz, P. Gnutek, C. Rudowicz, Solid State Commun. 150, 1610 (2010), doi: 10.1016/j.ssc.2010.06.045
- [41] M. Açıkgöz, P. Gnutek, C. Rudowicz, Chem. Phys. Lett. 524, 49 (2012), doi: 10.1016/j.cplett.2011.12.042
- [42] M. Açıkgöz, P. Gnutek, C. Rudowicz, Chem. Phys. 402, 83 (2012), doi: 10.1016/j.chemphys.2012.04.012
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv125n527kz