Preferences help
enabled [disable] Abstract
Number of results
2014 | 125 | 5 | 1210-1214
Article title

Phase Transition of Electrooxidized Fe_3O_4 to γ and α-Fe_2O_3 Nanoparticles Using Sintering Treatment

Title variants
Languages of publication
In this work, electrosynthesis of Fe_3O_4 nanoparticles was carried out potentiostatically in an aqueous solution of C_4H_{12}NCl which acts as supporting electrolyte and electrostatic stabilizer. γ-Fe_2O_3 nanoparticles were synthesized by controlling oxidation of the electrooxidized Fe_3O_4 nanoparticles at different temperature. Finally the phase transition to α-Fe_2O_3 nanoparticles was performed at high temperatures using sintering treatment. The synthesized particles were characterized using X-ray diffraction, Fourier transformation, infrared scanning electron microscopy with energy dispersive X-ray analysis, and vibrating sample magnetometry. Based on the X-ray diffraction results, the transition from Fe_3O_4 to cubic and tetragonal γ-Fe_2O_3 was performed at 200C and 650°C, respectively. Furthermore, phase transition from metastable γ-Fe_2O_3 to stable α-Fe_2O_3 with rhombohedral crystal structure was approved at 800°C. The existence of the stabilizer molecules at the surface of Fe_3O_4 nanoparticles was confirmed by Fourier transformation infrared spectroscopy. According to scanning electron microscopy images, the average particles size was observed around 50 nm for electrooxidized Fe_3O_4 and γ-Fe_2O_3 nanoparticles prepared at sintering temperature lower than 900°C, however by raising sintering temperature above 900C the mean particles size increases. Energy dispersive X-ray point analysis revealed that the nanoparticles are almost pure and composed of Fe and O elements. According to the vibrating sample magnetometry results, saturation magnetization, coercivity field, and remnant magnetization decrease by phase transition from Fe_3O_4 to Fe_2O_3.
  • Physics Department, Faculty of Science, Shahid Chamran University, Ahvaz, Iran
  • Physics Department, Faculty of Science, Shahid Chamran University, Ahvaz, Iran
  • [1] H. Park, P. Ayala, M.A. Deshusses, A. Mulchandani, H. Choi, N.V. Myung, Chem. Eng. J. 139, 208 (2008), doi: 10.1016/j.cej.2007.10.025
  • [2] K. Nishio, Y. Masaike, M. Ikeda, H. Narimatsu, N. Gokon, S. Tsubouchi, M. Hatakeyama, S. Sakamoto, N. Hanyu, A. Sandhu, H. Kawaguchi, M. Abe, H. Handa, Coll. Surf. B Biointerfaces 64, 162 (2008), doi: 10.1016/j.colsurfb.2008.01.013
  • [3] M.R. Khorramzadeh, Z. Esmail-Nazari, Z. Zarei-Ghaane, M. Shakibaei, K. Mollazadeh-Moghaddam, M. Iranshahi, A.R. Shahverdi, Mater. Sci. Eng. C 30, 1038 (2010), doi: 10.1016/j.msec.2010.05.005
  • [4] H. Basti, L. Ben Tahar, L.S. Smiri, F. Herbst, M.J. Vaulay, F. Chau, S. Ammar, S. Benderbous, J. Coll. Interface Sci. 341, 248 (2010), doi: 10.1016/j.jcis.2009.09.043
  • [5] Y. Li, X. Qui, Y. Lin, X. Liu, R. Gao, A. Wang, Appl. Surf. Sci. 256, 6977 (2010), doi: 10.1016/j.apsusc.2010.05.009
  • [6] J. Qu, G. Liu, Y. Wang, R. Hong, Adv. Powder Technol. 21, 461 (2010), doi: 10.1016/j.apt.2010.01.008
  • [7] Y.F. Shen, J. Tang, Z.H. Nie, Y.D. Wang, Y. Ren, L. Zuo, Bioresour. Technol. 100, 4139 (2009), doi: 10.1016/j.biortech.2009.04.004
  • [8] J. Huang, G. Yang, W. Meng, L. Wu, A. Zhu, X. Jiao, Biosens. Bioelectron. 25, 1204 (2010), doi: 10.1016/j.bios.2009.10.036
  • [9] Y. Wu, J. Zhang, Y. Tong, X. Xu, J. Hazard. Mater. 172, 1640 (2009), doi: 10.1016/j.jhazmat.2009.08.045
  • [10] I. Kazeminezhad, S. Mosivand, M. Farbod, Curr. Nanosci. 7, 819 (2011), doi: 10.2174/157341311797483727
  • [11] G. Cao, Nanostructures and Nanomaterials, Synthesis, Properties and Applications, Imperial College Press, London 2004, doi: 10.1142/9781860945960
  • [12] G. Schimanke, M. Martin, Solid State Ionics 136, 1235 (2000), doi: 10.1016/S0167-2738(00)00593-2
  • [13] R.Y. Hong, T.T. Pan, Y.P. Han, H.Z. Li, J. Ding, S. Han, J. Magn. Magn. Mater. 310, 37 (2007), doi: 10.1016/j.jmmm.2006.07.026
  • [14] X. Wei, R.C. Viadero Jr, Coll. Surf. A: Physicochem. Eng. Asp. 294, 280 (2007), doi: 10.1016/j.colsurfa.2006.07.060
  • [15] K. Tokumitsu, T. Nasu, Scr. Mater. 44, 1421 (2001), doi: 10.1016/S1359-6462(01)00851-X
  • [16] H. Iida, K. Takayanagi, T. Nakanishi, T. Osaka, J. Coll. Interface Sci. 314, 274 (2007), doi: 10.1016/j.jcis.2007.05.047
  • [17] D. Chen, S. Ni, Z. Chen, Chin. Particuol. 5, 357 (2007), doi: 10.1016/j.cpart.2007.05.005
  • [18] Y.S. Liu, P. Liu, Z.X. Su, F.S. Li, F.S. Wen, Appl. Surf. Sci. 255, 2020 (2008), doi: 10.1016/j.apsusc.2008.06.193
  • [19] J. Liu, B. Sun, J. Hu, Y. Pei, H. Li, M. Qiao, J. Catal. 274, 287 (2010), doi: 10.1016/j.jcat.2010.07.014
  • [20] D. Amara, I. Felner, I. Nowik, S. Margel, Coll. Surf. A, Physicochem. Eng. Asp. 339, 106 (2009), doi: 10.1016/j.colsurfa.2009.02.003
  • [21] L. Cabrera, S. Gutierrez, N. Menendez, M.P. Morales, P. Herrasti, Electrochim. Acta 53, 3436 (2008), doi: 10.1016/j.electacta.2007.12.006
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.