PL EN


Preferences help
enabled [disable] Abstract
Number of results
2014 | 125 | 5 | 1206-1209
Article title

Investigations of the Optical Band Positions and Spin-Hamiltonian Parameters for the Rhombic VO^{2+} Complex in CsCl Crystal

Content
Title variants
Languages of publication
EN
Abstracts
EN
The optical band positions and spin-Hamiltonian parameters (g factors g_{i} and hyperfine structure constants A_{i}, where i=x, y, z) of the rhombic VO^{2+} complex in CsCl crystal are calculated together from two theoretical methods. One is the complete diagonalization (of energy matrix) method and another is the perturbation theory method. The calculated results from the two methods coincide and are in reasonable agreement with the experimental values. So, both methods are effective in the explanations of optical and electron paramagnetic resonance (EPR) data for d^1 ions in crystals. The calculations also suggest that in d^1 rhombic octahedra the ground state is almost a pure | d_{xy} ⟩ state. This point is different from that of conjugate d^9 (e.g., Cu^{2+}) ions in rhombic octahedra where the ground state should be an admixture of ground and first excited states.
Keywords
Contributors
author
  • Department of Mathematics and Physics, Chongqing University of Science and Technology Chongqing 401331, People's Republic of China
author
  • Department of Material Science, Sichuan University, Chengdu 610064, People's Republic of China
  • International Centre for Materials Physics, Chinese Academy of Sciences Shenyang 110016, People's Republic of China
author
  • Department of Mathematics and Physics, Chongqing University of Science and Technology Chongqing 401331, People's Republic of China
author
  • Department of Mathematics and Physics, Chongqing University of Science and Technology Chongqing 401331, People's Republic of China
References
  • [1] R.S. Bansal, V.P. Seth, Prem. Chand, J. Phys. Chem. Solids 50, 839 (1989), doi: 10.1016/0022-3697(89)90064-4
  • [2] D.R. Hutton, F.A. Darmann, G.J. Troup, Aust. J. Phys. 44, 429 (1991), doi: 10.1071/PH910429
  • [3] B. Karabulut, A. Tufan, Spectrochim. Acta A 65, 742 (2006), doi: 10.1016/j.saa.2006.01.002
  • [4] I. Ucar, Spectrochim. Acta A 72, 399 (2009), doi: 10.1016/j.saa.2008.10.013
  • [5] Z. Yarbasi, A. Karabulut, B. Karabulut, Spectrochim. Acta A 79, 1304 (2011), doi: 10.1016/j.saa.2011.04.059
  • [6] R. Kripal, A.K. Shukla, Chin. Phys. Lett. 28, 037601 (2011), doi: 10.1088/0256-307X/28/3/037601
  • [7] J.L. Rao, R.M. Krishna, S.V.J. Lakshman, Solid State Commun. 67, 531 (1988), doi: 10.1016/0038-1098(84)90176-5
  • [8] G. Elbers, G. Lehmann, Z. Naturforsch. A 40, 511 (1985)
  • [9] J.S. Griffith, The Theory of Transition-Metal Ions, Cambridge University Press, London 1964
  • [10] C. Rudowicz, Y.Y. Yeung, Z.Y. Yang, J. Qin, J. Phys., Condens. Matter 14, 5619 (2002), doi: 10.1088/0953-8984/14/22/314
  • [11] C. Rudowicz, S. Misra, Appl. Spectrosc. Rev. 35, 11 (2001), doi: 10.1081/ASR-100103089
  • [12] W.C. Zheng, W. Fang, J. Appl. Phys. 101, 113908 (2007), doi: 10.1063/1.2737393
  • [13] W.C. Zheng, W. Fang, Y. Mei, J. Appl. Phys. 101, 053911 (2007), doi: 10.1063/1.2472647
  • [14] A. Abragam, B. Bleaney, Electron Paramagnetic Resonance of Transition Ions, Oxford University Press, London 1970
  • [15] Z.Y. Yang, C. Rudowicz, J. Qin, Physica B 318, 188 (2002), doi: 10.1016/S0921-4526(02)00590-2
  • [16] M.G. Zhao, J.A. Xu, G.R. Bai, H.S. Xie, Phys. Rev. B 27, 1516 (1983), doi: 10.1103/PhysRevB.27.1516
  • [17] W.C. Zheng, Q. Zhou, X.X. Wu, Y. Mei, Spectrochim. Acta A 61, 243 (2005), doi: 10.1016/j.saa.2004.02.035
  • [18] W.C. Zheng, Q. Zhou, X.X. Wu, Y. Mei, Z. Naturforsch. A 61, 286 (2006)
  • [19] B.R. McGarvey, J. Phys. Chem. 71, 51 (1967), doi: 10.1021/j100860a007
  • [20] S. Sugano, Y. Tanabe, H. Kamimura, Multiplets of Transition Metal Ions in Crystals, Academic Press, New York 1970
  • [21] B.N. Misra, R. Kripal, Chem. Phys. 19, 17 (1977), doi: 10.1016/0301-0104(77)80002-5
  • [22] R. Tapramaz, B. Karabulut, F. Koksal, J. Phys. Chem. Solids 61, 1367 (2000), doi: 10.1016/S0022-3697(00)00024-X
  • [23] B. Karabulut, A. Tufan, Spectrochim. Acta A 65, 285 (2006), doi: 10.1016/j.saa.2005.10.044
  • [24] D.T. Zhang, L. He, W.Q. Yang, W.C. Zheng, Physica B 405, 3642 (2010), doi: 10.1016/j.physb.2010.05.057
  • [25] K. Chandrasekharan, V.S. Murty, Physica B 215, 243 (1995), doi: 10.1002/pssb.2220640152
  • [26] V. Havlicek, P. Novak, B.V. Mill, Phys. Status Solidi B 64, K19 (1974), doi: 10.1002/pssb.2220640152
  • [27] I.N. Geifman, I.S. Goloviva, P.G. Nagornyl, Phys. Solid State 40, 491 (1998), doi: 10.1134/1.1130317
  • [28] M. Sato, T. Kwan, J. Chem. Phys. 50, 558 (1969), doi: 10.1063/1.1670852
  • [29] P.T. Manoharan, M.T. Rogers, J. Chem. Phys. 49, 3912 (1968), doi: 10.1063/1.1670700
  • [30] K.F. Dombrowski, V. Kaufmann, M. Kunzer, K. Maier, J. Schneider, V.B. Shields, M.G. Spencer, Phys. Rev. B 50, 18034 (1994), doi: 10.1103/PhysRevB.50.18034
  • [31] W.C. Zheng, Y.J. Fan, X.X. Wu, Z. Naturforsch. A 60, 433 (2005)
  • [32] R. Muncaster, S. Parke, J. Non-Cryst. Solids 24, 399 (1977), doi: 10.1016/0022-3093(77)90107-7
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv125n525kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.