Preferences help
enabled [disable] Abstract
Number of results
2014 | 125 | 5 | 1163-1166
Article title

Controlling of Transformation Temperatures of Cu-Al-Mn Shape Memory Alloys by Chemical Composition

Title variants
Languages of publication
The Cu-Al-Mn shape memory alloys having various chemical compositions were prepared by arc melting method to control the phase transformation parameters. The phase transformation parameters and structural properties of the alloys were investigated by differential scanning calorimetry and optic microscopy, respectively. The effects of the chemical composition on characteristic transformation temperatures, enthalpy and entropy values of Cu-Al-Mn ternary system were investigated. The characteristic transformation temperatures of austenite and martensite phase (A_{s}, A_{f}, M_{s}, and M_{f}) are increased with change in the chemical composition of the alloys. The average crystallite size for the alloys was calculated to determine the effect of aluminum and manganese compositions on the transformation temperatures. The change in transformation temperatures indicates the same trend with change in crystallite size. The obtained results suggest that the phase transformation parameters of the Cu-Al-Mn alloys can be controlled by Al and Mn contents.
Physical description
  • Department of Physics, Faculty of Science, University of Firat, TR-23119, Elazig, Turkey
  • Department of Chemistry, Faculty of Science, University of Firat, TR-23119, Elazig, Turkey
  • Department of Physics, Faculty of Science, University of Firat, TR-23119, Elazig, Turkey
  • [1] H.H. Kart, M. Tomak, M. Uludoğan, T. Cagın, Comput. Mater. Sci. 32, 107 (2005), doi: 10.1016/j.commatsci.2004.07.003
  • [2] Z. Wang, G. Zu, T. Xo, Y. Huo, Thermochim. Acta 436, 153 (2005), doi: 10.1016/j.tca.2005.06.028
  • [3] P. Entel, R. Meyer, K. Kadau, Philos. Mag. B 80, 183 (2000), doi: 10.1080/014186300255609
  • [4] A. Chryochoos, H. Pham, O. Maisonneuve, Nucl. Eng. Des. 162, 1 (1996), doi: 10.1016/0029-5493(95)01140-4
  • [5] S. Kazanc, C. Tatar, Int. J. Solids Struct. 45, 3282 (2008), doi: 10.1016/j.ijsolstr.2008.01.027
  • [6] F. Gori, D. Carnevale, A. Doro Altan, S. Nicosia, E. Pennestri, Int. J. Thermophys. 27, 866 (2006), doi: 10.1007/s10765-006-0060-3
  • [7] V.V. Kokorin, L.E. Kozlova, A.O. Perekos, Mater. Sci. Eng. A 481-482, 542 (2008), doi: 10.1016/j.msea.2006.12.238
  • [8] U.S. Mallik, V. Sampath, J. Alloys Comp. 459, 142 (2008), doi: 10.1016/j.jallcom.2007.04.254
  • [9] M. Sharma, S.K. Vajpai, R.K. Dube, Powder Metall. 54, 620 (2011), doi: 10.1179/1743290110Y.0000000010
  • [10] K. Matsushita, T. Okomoto, T. Okamoto, J. Mater. Sci. 20, 689 (1985), doi: 10.1007/BF01026544
  • [11] N. Suresh, U. Ramamurty, J. Alloy Comp. 449, 113 (2008), doi: 10.1016/j.jallcom.2006.02.094
  • [12] D. Sonia, P. Rotaru, S. Rizescu, N.G. Bizdoaca, J. Therm. Anal. Calorim. 111, 1255 (2013), doi: 10.1007/s10973-012-2369-4.2013:111-1255-1262
  • [13] N. Zárubová, V. Novák, Mater. Sci. Eng. A 378, 216 (2004), doi: 10.1016/j.msea.2003.10.346
  • [14] S. Gong, Z. Li, G.Y. Xu, N. Liu, Y.Y. Zhao, S.Q. Liang, J. Alloys Comp. 509, 2924 (2011), doi: 10.1016/j.jallcom.2010.11.157
  • [15] C. Aksu Canbay, Ph.D Thesis, Fırat University, Institue of Science, Elazığ, Turkey 2010
  • [16] M.O. Prado, P.M. Decarte, F. Lovey, Scr. Metall. Mater. 33, 878 (1995), doi: 10.1016/0956-716X(95)00292-4
  • [17] R.J. Salzbrenner, M. Cohen, Acta Metall. 27, 739 (1979), doi: 10.1016/0001-6160(79)90107-X
  • [18] H.E. Kissinger, Anal. Chem. 29, 1702 (1957), doi: 10.1021/ac60131a045
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.